Abstract
This paper studies the task of comparative preference classification (CPC). Given two entities in a sentence, our goal is to classify whether the first (or the second) entity is preferred over the other or no comparison is expressed at all between the two entities. Existing works either do not learn entity-aware representations well and fail to deal with sentences involving multiple entity pairs or use sequential modeling approaches that are unable to capture long-range dependencies between the entities. Some also use traditional machine learning approaches that do not generalize well. This paper proposes a novel Entity-aware Dependency-based Deep Graph Attention Network (ED-GAT) that employs a multihop graph attention over a dependency graph sentence representation to leverage both the semantic information from word embeddings and the syntactic information from the dependency graph to solve the problem. Empirical evaluation shows that the proposed model achieves the state-of-the-art performance in comparative preference classification.
Original language | English (US) |
---|---|
Title of host publication | ACL 2020 - 58th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 5782-5788 |
Number of pages | 7 |
ISBN (Electronic) | 9781952148255 |
State | Published - 2020 |
Externally published | Yes |
Event | 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020 - Virtual, Online, United States Duration: Jul 5 2020 → Jul 10 2020 |
Publication series
Name | Proceedings of the Annual Meeting of the Association for Computational Linguistics |
---|---|
ISSN (Print) | 0736-587X |
Conference
Conference | 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020 |
---|---|
Country/Territory | United States |
City | Virtual, Online |
Period | 7/5/20 → 7/10/20 |
Bibliographical note
Publisher Copyright:© 2020 Association for Computational Linguistics