Entangled tetrahedron ground state and excitations of the magnetoelectric skyrmion material Cu2OSeO3

Judit Romhányi, Jeroen Van Den Brink, Ioannis Rousochatzakis

Research output: Contribution to journalArticlepeer-review

31 Scopus citations


The strongly correlated cuprate Cu2OSeO3 has been recently identified as the first insulating system exhibiting a skyrmion lattice phase. Using a microscopic multiboson theory for its magnetic ground state and excitations, we establish the presence of two distinct types of modes: a low-energy manifold that includes a gapless Goldstone mode and a set of weakly dispersive high-energy magnons. These spectral features are the most direct signatures of the fact that the essential magnetic building blocks of Cu2OSeO3 are not individual Cu spins, but rather weakly coupled Cu4 tetrahedra. Several of the calculated excitation energies are in excellent agreement with terahertz electron spin resonance, Raman, and far-infrared experiments, while the magnetoelectric effect determined within the present quantum-mechanical framework is also fully consistent with experiments, giving strong evidence in the entangled Cu4 tetrahedra picture of Cu2OSeO3. The predicted energy and momentum dependence of the dipole and quadrupole spin structure factors call for further experimental tests of this picture.

Original languageEnglish (US)
Article number140404
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number14
StatePublished - Oct 29 2014

Bibliographical note

Publisher Copyright:
© 2014 American Physical Society.


Dive into the research topics of 'Entangled tetrahedron ground state and excitations of the magnetoelectric skyrmion material Cu2OSeO3'. Together they form a unique fingerprint.

Cite this