Enhancing subtilisin thermostability through a modified normalized B-factor analysis and loop-grafting strategy

Heng Tang, Ke Shi, Cheng Shi, Hideki Aihara, Juan Zhang, Guocheng Du

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

Rational design-guided improvement of protein thermostability typically requires identification of residues or regions contributing to instability and introduction of mutations into these residues or regions. One popular method, B-FIT, utilizes B-factors to identify unstable residues or regions and combines them with other strategies, such as directed evolution. Here, we performed structure-based engineering to improve the thermostability of the subtilisin E-S7 (SES7) peptidase. The B-value of each residue was redefined in a normalized B-factor calculation, which was implemented with a refined bioinformatics analysis strategy to identify the critical area (loop 158-162) related to flexibility and to screen for suitable thermostable motif sequences in the Protein DataBank that can act as transplant loops. In total,weanalyzed 445 structures and identified 29 thermostable motifs as candidates. Using these motifs as a starting point, we performed iterative homologous modeling to obtain a desirable chimera loop and introduced five different mutations into this loop to construct thermostable SES7 proteins. Differential scanning fluorimetry revealed increases of 7.3 °C in the melting temperature ofanSES7variant designatedM5 compared with the WT. The X-ray crystallographic structure of this variant was resolved at 1.96Å resolution. The crystal structure disclosed that M5 forms more hydrogen bonds than the WT protein, consistent with design and molecular dynamics simulation results. In summary, the modified B-FIT strategy reported here has yielded a subtilisin variant with improved thermostability and promising industrial applications, supporting the notion that this modified method is a powerful tool for protein engineering.

Original languageEnglish (US)
Pages (from-to)18398-18407
Number of pages10
JournalJournal of Biological Chemistry
Volume294
Issue number48
DOIs
StatePublished - Nov 29 2019

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

Fingerprint Dive into the research topics of 'Enhancing subtilisin thermostability through a modified normalized B-factor analysis and loop-grafting strategy'. Together they form a unique fingerprint.

  • Cite this