Enhancing diversity in undergraduate science: self-efficacy drives performance gains with active learning

Cissy J. Ballen, Carl Wieman, Shima Salehi, Jeremy B. Searle, Kelly R. Zamudio

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning disproportionately benefits URM students, we quantified the effects of traditional versus active learning on student academic performance, science self-efficacy, and sense of social belonging in a large (more than 250 students) introductory STEM course. A transition to active learning closed the gap in learning gains between non-URM and URM students and led to an increase in science self-efficacy for all students. Sense of social belonging also increased significantly with active learning, but only for non-URM students. Through structural equation modeling, we demonstrate that, for URM students, the increase in self-efficacy mediated the positive effect of active-learning pedagogy on two metrics of student performance. Our results add to a growing body of research that supports varied and inclusive teaching as one pathway to a diversified STEM workforce.

Original languageEnglish (US)
Article numberar56
JournalCBE life sciences education
Volume16
Issue number4
DOIs
StatePublished - Dec 1 2017

Bibliographical note

Funding Information:
We thank P. Lepage, L. Sanfilippo, A. Godert, E. Balko, and Cornell’s Office of Undergraduate Biology and Center for Teaching Excellence for course support; F. Vermeylen for statistical advice; M. Clarkberg for help with student data; and H. W. Greene, M. L. Smith, L. Sanfilippo, A. Godert, G. Trujillo, and the Wieman lab for comments on the manuscript. This work was approved by IRB protocol number 1410005010 and funded by the College of Arts and Sciences, Cornell University.

Fingerprint Dive into the research topics of 'Enhancing diversity in undergraduate science: self-efficacy drives performance gains with active learning'. Together they form a unique fingerprint.

Cite this