Enhanced geographically typed semantic schema matching

Jeffrey Partyka, Pallabi Parveen, Latifur Khan, B. Thuraisingham, Shashi Shekhar

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Resolving semantic heterogeneity across distinct data sources remains a highly relevant problem in the GIS domain requiring innovative solutions. Our approach, called GSim, semantically aligns tables from respective GIS databases by first choosing attributes for comparison. We then examine their instances and calculate a similarity value between them called entropy-based distribution (EBD)1 by combining two separate methods. Our primary method discerns the geographic types from instances of compared attributes. If successful, EBD is calculated using only this method. GSim further facilitates geographic type matching by using latlong values to further disambiguate between multiple types of a given instance and applying attribute weighting to quantify the uniqueness of mapped attributes. If geographic type matching is not possible, we then apply a generic schema matching method, independent of the knowledge domain, which employs normalized Google distance. We show the effectiveness of our approach over the traditional approaches across multi-jurisdictional datasets by generating impressive results.

Original languageEnglish (US)
Pages (from-to)52-70
Number of pages19
JournalJournal of Web Semantics
Volume9
Issue number1
DOIs
StatePublished - Mar 1 2011

Keywords

  • GIS
  • Gazetteer
  • Geocoding
  • Geosemantics
  • Geotypes
  • Schema

Fingerprint Dive into the research topics of 'Enhanced geographically typed semantic schema matching'. Together they form a unique fingerprint.

Cite this