TY - JOUR
T1 - Enhanced Fe-Centered Redox Flexibility in Fe-Ti Heterobimetallic Complexes
AU - Moore, James T.
AU - Chatterjee, Sudipta
AU - Tarrago, Maxime
AU - Clouston, Laura J.
AU - Sproules, Stephen
AU - Bill, Eckhard
AU - Bernales, Varinia
AU - Gagliardi, Laura
AU - Ye, Shengfa
AU - Lancaster, Kyle M.
AU - Lu, Connie C.
N1 - Publisher Copyright:
© 2019 American Chemical Society.
PY - 2019/5/6
Y1 - 2019/5/6
N2 - Previously, we reported the synthesis of Ti[N(o-(NCH 2 P( i Pr) 2 )C 6 H 4 ) 3 ] and the Fe-Ti complex, FeTi[N(o-(NCH 2 P( i Pr) 2 )C 6 H 4 ) 3 ], abbreviated as TiL (1), and FeTiL (2), respectively. Herein, we describe the synthesis and characterization of the complete redox families of the monometallic Ti and Fe-Ti compounds. Cyclic voltammetry studies on FeTiL reveal both reduction and oxidation processes at -2.16 and -1.36 V (versus Fc/Fc + ), respectively. Two isostructural redox members, [FeTiL] + and [FeTiL] - (2 ox and 2 red , respectively) were synthesized and characterized, along with BrFeTiL (2-Br) and the monometallic [TiL] + complex (1 ox ). The solid-state structures of the [FeTiL] +/0/- series feature short metal-metal bonds, ranging from 1.94-2.38 Å, which are all shorter than the sum of the Ti and Fe single-bond metallic radii (cf. 2.49 Å). To elucidate the bonding and electronic structures, the complexes were characterized with a host of spectroscopic methods, including NMR, EPR, and 57 Fe Mössbauer, as well as Ti and Fe K-edge X-ray absorption spectroscopy (XAS). These studies, along with hybrid density functional theory (DFT) and time-dependent DFT calculations, suggest that the redox processes in the isostructural [FeTiL] +,0,- series are primarily Fe-based and that the polarized Fe-Ti π-bonds play a role in delocalizing some of the additional electron density from Fe to Ti (net 13%).
AB - Previously, we reported the synthesis of Ti[N(o-(NCH 2 P( i Pr) 2 )C 6 H 4 ) 3 ] and the Fe-Ti complex, FeTi[N(o-(NCH 2 P( i Pr) 2 )C 6 H 4 ) 3 ], abbreviated as TiL (1), and FeTiL (2), respectively. Herein, we describe the synthesis and characterization of the complete redox families of the monometallic Ti and Fe-Ti compounds. Cyclic voltammetry studies on FeTiL reveal both reduction and oxidation processes at -2.16 and -1.36 V (versus Fc/Fc + ), respectively. Two isostructural redox members, [FeTiL] + and [FeTiL] - (2 ox and 2 red , respectively) were synthesized and characterized, along with BrFeTiL (2-Br) and the monometallic [TiL] + complex (1 ox ). The solid-state structures of the [FeTiL] +/0/- series feature short metal-metal bonds, ranging from 1.94-2.38 Å, which are all shorter than the sum of the Ti and Fe single-bond metallic radii (cf. 2.49 Å). To elucidate the bonding and electronic structures, the complexes were characterized with a host of spectroscopic methods, including NMR, EPR, and 57 Fe Mössbauer, as well as Ti and Fe K-edge X-ray absorption spectroscopy (XAS). These studies, along with hybrid density functional theory (DFT) and time-dependent DFT calculations, suggest that the redox processes in the isostructural [FeTiL] +,0,- series are primarily Fe-based and that the polarized Fe-Ti π-bonds play a role in delocalizing some of the additional electron density from Fe to Ti (net 13%).
UR - http://www.scopus.com/inward/record.url?scp=85065475013&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85065475013&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.9b00442
DO - 10.1021/acs.inorgchem.9b00442
M3 - Article
C2 - 30957996
AN - SCOPUS:85065475013
SN - 0020-1669
VL - 58
SP - 6199
EP - 6214
JO - Inorganic chemistry
JF - Inorganic chemistry
IS - 9
ER -