Enhanced CO 2 adsorption over polymeric amines supported on heteroatom-incorporated SBA-15 silica: Impact of heteroatom type and loading on sorbent structure and adsorption performance

Yasutaka Kuwahara, Dun Yen Kang, John R. Copeland, Praveen Bollini, Carsten Sievers, Takashi Kamegawa, Hiromi Yamashita, Christopher W. Jones

Research output: Contribution to journalArticle

80 Scopus citations

Abstract

Silica supported amine materials are promising compositions that can be used to effectively remove CO 2 from large stationary sources, such as flue gas generated from coal-fired power plants (ca. 10 % CO 2 ) and potentially from ambient air (ca. 400 ppm CO 2 ). The CO 2 adsorption characteristics of prototypical poly(ethyleneimine)-silica composite adsorbents can be significantly enhanced by altering the acid/base properties of the silica support by heteroatom incorporation into the silica matrix. In this study, an array of poly(ethyleneimine)-impregnated mesoporous silica SBA-15 materials containing heteroatoms (Al, Ti, Zr, and Ce) in their silica matrices are prepared and examined in adsorption experiments under conditions simulating flue gas (10 % CO 2 in Ar) and ambient air (400 ppm CO 2 in Ar) to assess the effects of heteroatom incorporation on the CO 2 adsorption properties. The structure of the composite adsorbents, including local information concerning the state of the incorporated heteroatoms and the overall surface properties of the silicate supports, are investigated in detail to draw a relationship between the adsorbent structure and CO 2 adsorption/desorption performance. The CO 2 adsorption/desorption kinetics are assessed by thermogravimetric analysis and in situ FT-IR measurements. These combined results, coupled with data on adsorbent regenerability, demonstrate a stabilizing effect of the heteroatoms on the poly(ethyleneimine), enhancing adsorbent capacity, adsorption kinetics, regenerability, and stability of the supported aminopolymers over continued cycling. It is suggested that the CO 2 adsorption performance of silica-aminopolymer composites may be further enhanced in the future by more precisely tuning the acid/base properties of the support. Soaking it up: An array of poly(ethyleneimine)-impregnated mesoporous silica materials containing heteroatoms (Me in illustration) in their matrices was prepared and examined in adsorption experiments. Compared to a conventional adsorbent, the composites showed superior CO 2 uptakes, CO 2 adsorption/desorption kinetics, and regenerabilities that depended on the heteroatom species and its concentration in the supports.

Original languageEnglish (US)
Pages (from-to)16649-16664
Number of pages16
JournalChemistry - A European Journal
Volume18
Issue number52
DOIs
StatePublished - Dec 1 2012

Keywords

  • adsorption
  • carbon dioxide fixation
  • carbon storage
  • mesoporous materials
  • organic-inorganic hybrid composites

Fingerprint Dive into the research topics of 'Enhanced CO <sub>2</sub> adsorption over polymeric amines supported on heteroatom-incorporated SBA-15 silica: Impact of heteroatom type and loading on sorbent structure and adsorption performance'. Together they form a unique fingerprint.

  • Cite this