Energy, environment, and economical advantages of solar thermal cracking of natural gas

Nesrin Ozalp

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Among all fossil fuels, natural gas is probably the most attractive one because of its higher heating value, and approximately 97% methane content, which creates less hazardous emissions during power generation. Considering these important facts and the demand for natural gas in the world market, it would be unlikely to think of converting natural gas. However, if we want to utilize our planet's limited natural gas resources better, then we need to explore alternative ways. A way to achieve that goal is direct cracking of natural gas via solar thermal processing. This paper describes advantages of solar cracking of natural gas from energy, environment and economic point of view. Results show that products of natural gas decomposition contain 8% more energy per mole compared to natural gas itself, while the decomposition process does not emit any hazardous emissions to the environment. As for the economics, once the decomposition products of natural gas, namely hydrogen and carbon black, are sold separately, it is possible to make up to three times more revenue than the selling of natural gas. The products of natural gas decomposition have a very wide use in chemical and petroleum industries. For example, hydrogen is a crucial commodity to refine crude oil, while carbon black is the fundamental component in car tire, battery, conveyer belt, and printer ink manufacturing industries. Currently, petroleum industry produces hydrogen via steam reforming of methane and the chemical industry produces carbon black from coal or natural gas combustion in furnace, which are both highly toxic and global warming emissive processes. With solar cracking of natural gas, these two important commodities can be produced without any emissions to the environment.

Original languageEnglish (US)
Title of host publicationASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2012
Pages851-857
Number of pages7
DOIs
StatePublished - Dec 1 2012
EventASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2012 - Rio de Janeiro, Brazil
Duration: Jul 1 2012Jul 6 2012

Publication series

NameProceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
Volume6

Other

OtherASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2012
CountryBrazil
CityRio de Janeiro
Period7/1/127/6/12

Keywords

  • Hydrogen
  • Natural gas
  • Petroleum industry
  • Solar energy

Fingerprint Dive into the research topics of 'Energy, environment, and economical advantages of solar thermal cracking of natural gas'. Together they form a unique fingerprint.

Cite this