Energy-efficient time-division multiplexed hybrid-switched noc for heterogeneous multicore systems

Jieming Yin, Pingqiang Zhou, Sachin S. Sapatnekar, Antonia Zhai

Research output: Chapter in Book/Report/Conference proceedingConference contribution

25 Scopus citations

Abstract

NoCs are an integral part of modern multicore processors, they must continuously support high-throughput low-latency on-chip data communication under a stringent energy budget when system size scales up. Heterogeneous multicore systems further push the limit of NoC design by integrating cores with diverse performance requirements onto the same die. Traditional packet-switched NoCs, which have the flexibility of connecting diverse computation and storage devices, are facing great challenges to meet the performance requirements within the energy budget due to latency and energy consumption associated with buffering and routing at each router. In this paper, we take advantage of the diversity in performance requirements of on-chip heterogeneous computing devices by designing, implementing, and evaluating a hybrid-switched network that allows the packet-switched and circuit-switched messages to share the same communication fabric by partitioning the network through time-division multiplexing (TDM). In the proposed hybrid-switched network, circuit-switched paths are established along frequently communicating nodes. Our experiments show that utilizing these paths can improve system performance by reducing communication latency and alleviating network congestion. Furthermore, better energy efficiency is achieved by reducing buffering in routers and in turn enabling aggressive power gating.

Original languageEnglish (US)
Title of host publicationProceedings - IEEE 28th International Parallel and Distributed Processing Symposium, IPDPS 2014
PublisherIEEE Computer Society
Pages293-303
Number of pages11
ISBN (Print)9780769552071
DOIs
StatePublished - 2014
Event28th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2014 - Phoenix, AZ, United States
Duration: May 19 2014May 23 2014

Publication series

NameProceedings of the International Parallel and Distributed Processing Symposium, IPDPS
ISSN (Print)1530-2075
ISSN (Electronic)2332-1237

Other

Other28th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2014
CountryUnited States
CityPhoenix, AZ
Period5/19/145/23/14

Keywords

  • energy-efficiency
  • interconnection network

Fingerprint Dive into the research topics of 'Energy-efficient time-division multiplexed hybrid-switched noc for heterogeneous multicore systems'. Together they form a unique fingerprint.

Cite this