TY - JOUR
T1 - Endurance exercise training attenuates natriuretic peptide release during maximal effort exercise
T2 - Biochemical correlates of the “athlete’s heart”
AU - Shah, Ankit B.
AU - Zilinski, Jodi
AU - Brown, Marcel
AU - Neary, Jennifer H.
AU - Weiner, Rory B.
AU - Hutter, Adolph M.
AU - Apple, Fred S.
AU - Picard, Michael H.
AU - Januzzi, James L.
AU - Baggish, Aaron L.
N1 - Publisher Copyright:
Copyright © 2018 the American Physiological Society. All rights reserved.
PY - 2018/12
Y1 - 2018/12
N2 - Endurance exercise training (ET) stimulates eccentric left ventricular hypertrophy (LVH) with left atrial dilation. To date, the biochemical correlates of exercise-induced cardiac remodeling (EICR) remain incompletely understood. Collegiate male rowers (n = 9) were studied with echocardiography and maximal-effort cardiopulmonary exercise testing (MECPET) before and after 90 days of ET intensification. Midregional proatrial natriuretic peptide (MR-proANP), NH2-terminal pro B-type natriuretic peptide (NT-proBNP), and high-sensitivity troponin T were measured at rest, peak MECPET, and 60 min post-MECPET at both study time points. Endurance exercise training resulted in eccentric LVH (LV mass = 102 ± 8 vs. 110 ± 11 g/m2, P = 0.001; relative wall thickness = 0.36 ± 0.04 vs. 0.37 ± 0.04, P = 0.103), left atrial dilation (74 ± 18 vs. 84 ± 15 ml, P < 0.001), and increased exercise capacity (peak Vo2 = 53.0 ± 5.9 vs. 67.3 ± 8.2 ml·kg-1·min-1, P < 0.001). Left ventricular remodeling was characterized by an ~7% increase in LV wall thickness but only a 3% increase in LV chamber radius. The magnitude of natriuretic peptide release, examined as percent change from rest to peak exercise, was significantly lower for both MR-proANP (115 [95,127]% vs. 78 [59,87]%, P = 0.04) and NT-proBNP (46 [31,70]% vs. 27 [25,37]%, P = 0.02) after ET. Rowing-based ET and corollary EICR appear to result in an attenuated natriuretic peptide response to maximal effort exercise. This may occur as a function of decreased cardiac wall stress after ET as seen by disproportionally higher ventricular wall thickening compared with chamber dilation.
AB - Endurance exercise training (ET) stimulates eccentric left ventricular hypertrophy (LVH) with left atrial dilation. To date, the biochemical correlates of exercise-induced cardiac remodeling (EICR) remain incompletely understood. Collegiate male rowers (n = 9) were studied with echocardiography and maximal-effort cardiopulmonary exercise testing (MECPET) before and after 90 days of ET intensification. Midregional proatrial natriuretic peptide (MR-proANP), NH2-terminal pro B-type natriuretic peptide (NT-proBNP), and high-sensitivity troponin T were measured at rest, peak MECPET, and 60 min post-MECPET at both study time points. Endurance exercise training resulted in eccentric LVH (LV mass = 102 ± 8 vs. 110 ± 11 g/m2, P = 0.001; relative wall thickness = 0.36 ± 0.04 vs. 0.37 ± 0.04, P = 0.103), left atrial dilation (74 ± 18 vs. 84 ± 15 ml, P < 0.001), and increased exercise capacity (peak Vo2 = 53.0 ± 5.9 vs. 67.3 ± 8.2 ml·kg-1·min-1, P < 0.001). Left ventricular remodeling was characterized by an ~7% increase in LV wall thickness but only a 3% increase in LV chamber radius. The magnitude of natriuretic peptide release, examined as percent change from rest to peak exercise, was significantly lower for both MR-proANP (115 [95,127]% vs. 78 [59,87]%, P = 0.04) and NT-proBNP (46 [31,70]% vs. 27 [25,37]%, P = 0.02) after ET. Rowing-based ET and corollary EICR appear to result in an attenuated natriuretic peptide response to maximal effort exercise. This may occur as a function of decreased cardiac wall stress after ET as seen by disproportionally higher ventricular wall thickening compared with chamber dilation.
KW - Athletic heart
KW - Endurance exercise
KW - Exercise-induced cardiac remodeling
KW - Natriuretic peptides
UR - http://www.scopus.com/inward/record.url?scp=85057832631&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057832631&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00293.2018
DO - 10.1152/japplphysiol.00293.2018
M3 - Article
AN - SCOPUS:85057832631
SN - 8750-7587
VL - 125
SP - 1702
EP - 1709
JO - Journal of applied physiology
JF - Journal of applied physiology
IS - 6
ER -