TY - JOUR
T1 - Endothelial cell heme oxygenase and ferritin induction by heme proteins
T2 - a possible mechanism limiting shock damage.
AU - Balla, J.
AU - Jacob, H. S.
AU - Balla, G.
AU - Nath, K.
AU - Vercellotti, G. M.
PY - 1992
Y1 - 1992
N2 - Acutely, hemin sensitizes endothelial cells to oxidants but chronically protects the endothelium through the induction of ferritin. By releasing its heme, methemoglobin can sensitize endothelial cells in a fashion similar to free hemin. Furthermore, prolonged incubation with the endothelium allows methemoglobin to induce heme oxygenase and ferritin and concomitantly to modulate oxidant-mediated cytotoxicity. Methemoglobin but not hemoglobin, metmyoglobin or cytochrome c induces heme oxygenase and ferritin. Heme needs to be released from methemoglobin, since sodium cyanide, haptoglobin, and hemopexin inhibit the induction of these proteins. Neutrophils can oxidize hemoglobin to methemoglobin, which can subsequently induce both heme oxygenase and ferritin. We speculate that in shock with disseminated intravascular coagulation, marginated PMNs oxidize hemoglobin to heme-releasing methemoglobin. If critical defenses such as haptoglobin and hemopexin are overwhelmed, heme enters the endothelin cells, sensitizing them to oxidant damage. Endothelial cell adaptation via heme-induced heme oxygenase and ferritin production might limit ultimate progression to pulmonary and other vascular leak syndromes.
AB - Acutely, hemin sensitizes endothelial cells to oxidants but chronically protects the endothelium through the induction of ferritin. By releasing its heme, methemoglobin can sensitize endothelial cells in a fashion similar to free hemin. Furthermore, prolonged incubation with the endothelium allows methemoglobin to induce heme oxygenase and ferritin and concomitantly to modulate oxidant-mediated cytotoxicity. Methemoglobin but not hemoglobin, metmyoglobin or cytochrome c induces heme oxygenase and ferritin. Heme needs to be released from methemoglobin, since sodium cyanide, haptoglobin, and hemopexin inhibit the induction of these proteins. Neutrophils can oxidize hemoglobin to methemoglobin, which can subsequently induce both heme oxygenase and ferritin. We speculate that in shock with disseminated intravascular coagulation, marginated PMNs oxidize hemoglobin to heme-releasing methemoglobin. If critical defenses such as haptoglobin and hemopexin are overwhelmed, heme enters the endothelin cells, sensitizing them to oxidant damage. Endothelial cell adaptation via heme-induced heme oxygenase and ferritin production might limit ultimate progression to pulmonary and other vascular leak syndromes.
UR - http://www.scopus.com/inward/record.url?scp=0027033841&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027033841&partnerID=8YFLogxK
M3 - Article
C2 - 1308986
AN - SCOPUS:0027033841
SN - 0066-9458
VL - 105
SP - 1
EP - 6
JO - Transactions of the Association of American Physicians
JF - Transactions of the Association of American Physicians
ER -