Abstract
Network pruning is a widely used technique to reduce computation cost and model size for deep neural networks. However, the typical three-stage pipeline, i.e., training, pruning and retraining (fine-tuning) significantly increases the overall training trails. In this paper, we develop a systematic weight-pruning optimization approach based on Surrogate Lagrangian relaxation (SLR), which is tailored to overcome difficulties caused by the discrete nature of the weight-pruning problem while ensuring fast convergence. We further accelerate the convergence of the SLR by using quadratic penalties. Model parameters obtained by SLR during the training phase are much closer to their optimal values as compared to those obtained by other state-of-the-art methods. We evaluate the proposed method on image classification tasks using CIFAR-10 and ImageNet, as well as object detection tasks using COCO 2014 and Ultra-Fast-Lane-Detection using TuSimple lane detection dataset. Experimental results demonstrate that our SLR-based weight-pruning optimization approach achieves higher compression rate than state-of-the-arts under the same accuracy requirement. It also achieves a high model accuracy even at the hard-pruning stage without retraining (reduces the traditional three-stage pruning to two-stage). Given a limited budget of retraining epochs, our approach quickly recovers the model accuracy.
Original language | English (US) |
---|---|
Title of host publication | Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021 |
Editors | Zhi-Hua Zhou |
Publisher | International Joint Conferences on Artificial Intelligence |
Pages | 2497-2504 |
Number of pages | 8 |
ISBN (Electronic) | 9780999241196 |
State | Published - 2021 |
Externally published | Yes |
Event | 30th International Joint Conference on Artificial Intelligence, IJCAI 2021 - Virtual, Online, Canada Duration: Aug 19 2021 → Aug 27 2021 |
Publication series
Name | IJCAI International Joint Conference on Artificial Intelligence |
---|---|
ISSN (Print) | 1045-0823 |
Conference
Conference | 30th International Joint Conference on Artificial Intelligence, IJCAI 2021 |
---|---|
Country/Territory | Canada |
City | Virtual, Online |
Period | 8/19/21 → 8/27/21 |
Bibliographical note
Publisher Copyright:© 2021 International Joint Conferences on Artificial Intelligence. All rights reserved.