Emibions from a diesel engine operating in a dual-fuel mode using port-fuel injection of heated hydrous ethanol

Alex J. Nord, Jeffrey T. Hwang, William F. Northrop

Research output: Contribution to journalArticle

9 Scopus citations

Abstract

Aftermarket dual-fuel injection systems in diesel engines using hydrous ethanol as secondary fuel have been developed as a means to lower emibions from older dieselpowered equipment. However, our previous work has shown that the emibions benefits of currently available aftermarket intake fumigation injection systems can be inconsistent with manufacturer claims. Our current study evaluates a newly developed aftermarket dual-fuel system that incorporates a fuel heating system and port fuel injection (PFI). This paper describes an experimental investigation of engine-out emibions from a John Deere 4045HF475 Tier 2 engine with port injection of 180 proof (90% ethanol by volume) hydrous ethanol. The engine was retrofitted with a custom fuel heat exchanger to heat the hydrous ethanol to a range of 46-79 -C for helping to improve fuel vaporization in the intake port. PFI duration was controlled using engine speed and throttle position as inputs to achieve a desired fumigant energy fraction (FEF), defined as the amount of energy provided by the hydrous ethanol based on lower heating value (LHV) over the total fuel energy provided to the engine. Data was collected over a range of FEF with direct injected diesel for eight operating modes comparing heated versus unheated hydrous ethanol. Results of the study indicate that as FEF increases, NO emibions decrease, while NO2, CO, THC, and unburned ethanol emibions increase. In addition, it was found that preheating the ethanol using engine coolant prior to injection has little benefit on engine-out emibions. The work shows that the implemented aftermarket dualfuel PFI system can achieve FEF rates up to 37% at low engine load while yielding modest benefits in emibions.

Original languageEnglish (US)
Article number22204
JournalJournal of Energy Resources Technology, Transactions of the ASME
Volume139
Issue number2
DOIs
StatePublished - Mar 1 2017

Fingerprint Dive into the research topics of 'Emibions from a diesel engine operating in a dual-fuel mode using port-fuel injection of heated hydrous ethanol'. Together they form a unique fingerprint.

Cite this