Emergent Magnetic Degeneracy in Iron Pnictides due to the Interplay between Spin-Orbit Coupling and Quantum Fluctuations

Morten H. Christensen, Peter P. Orth, Brian M. Andersen, Rafael M. Fernandes

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Recent experiments in iron pnictide superconductors reveal that, as the putative magnetic quantum critical point is approached, different types of magnetic order coexist over a narrow region of the phase diagram. Although these magnetic configurations share the same wave vectors, they break distinct symmetries of the lattice. Importantly, the highest superconducting transition temperature takes place close to this proliferation of near-degenerate magnetic states. In this Letter, we employ a renormalization group calculation to show that such a behavior naturally arises due to the effects of spin-orbit coupling on the quantum magnetic fluctuations. Formally, the enhanced magnetic degeneracy near the quantum critical point is manifested as a stable Gaussian fixed point with a large basin of attraction. Implications of our findings to the superconductivity of the iron pnictides are also discussed.

Original languageEnglish (US)
Article number057001
JournalPhysical review letters
Volume121
Issue number5
DOIs
StatePublished - Jul 30 2018

Bibliographical note

Funding Information:
Our results provide a compelling scenario to explain the experimentally observed proliferation of C 4 phases in close proximity to the C 2 symmetric SSDW phase as optimal doping is approached in different iron-based compounds [9–24] . Instead of attributing this behavior to band structure effects, which requires fine-tuning in a wide range of compounds, our approach reveals that the emergence of C 4 phases near the putative magnetic QCP is a universal property of the low-energy magnetic properties of these materials. It arises from the interplay between spin-orbit coupling and magnetic fluctuations. We emphasize that these results are not contradictory, but complementary to the microscopic calculations [4,5,25–31] . In fact, our results in tandem with the mean-field results of, e.g., Refs.  [30,31] show that as long as the band structure effects bring the system closer, rather than farther from the degeneracy points, fluctuations will take over and move the system closer to the degeneracy point. Importantly, this effect is prominent near the putative magnetic QCP, when the system is at its upper critical dimension. This sheds new light on why the proliferation of C 2 and C 4 phases takes place near optimal doping, where the magnetic transition temperature is suppressed to zero. An important question is how this emergent C 2 - C 4 near-degeneracy impacts superconductivity. Several works have proposed an s + - state driven by fluctuations of the SSDW state [1–3] . Usually, the existence of additional channels of magnetic fluctuations does not guarantee an enhancement of T c . On the contrary, in the case of ferromagnetic [57] or Néel fluctuations [58] , they can cause pair breaking and promote competing superconducting states that suppress T c of the s + - state. In our case, however, fluctuations associated with the C 2 and C 4 phases are peaked at the same wave vectors ( π , 0 ) and ( 0 , π ) , and thus support the same pairing state. Therefore, one expects that this near degeneracy, by enhancing the phase space of fluctuations, may cause an enhancement of T c . The authors are grateful to W. R. Meier, A. E. Böhmer, J. Kang, A. Kreisel, M. N. Gastiasoro, D. D. Scherer, and M. Schütt for valuable discussions. M. H. C. and R. M. F. were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0012336. B. M. A. acknowledges financial support from a Lundbeckfond fellowship (Grant No. A9318). P. P. O. acknowledges support from Iowa State University Startup Funds. [1] 1 P. J. Hirschfeld , M. M. Korshunov , and I. I. Mazin , Rep. Prog. Phys. 74 , 124508 ( 2011 ). 10.1088/0034-4885/74/12/124508 [2] 2 A. V. Chubukov , Annu. Rev. Condens. Matter Phys. 3 , 57 ( 2012 ). ARCMCX 1947-5454 10.1146/annurev-conmatphys-020911-125055 [3] 3 D. J. Scalapino , Rev. Mod. Phys. 84 , 1383 ( 2012 ). RMPHAT 0034-6861 10.1103/RevModPhys.84.1383 [4] 4 J. Lorenzana , G. Seibold , C. Ortix , and M. Grilli , Phys. Rev. Lett. 101 , 186402 ( 2008 ). PRLTAO 0031-9007 10.1103/PhysRevLett.101.186402 [5] 5 I. Eremin and A. V. Chubukov , Phys. Rev. B 81 , 024511 ( 2010 ). PRBMDO 1098-0121 10.1103/PhysRevB.81.024511 [6] 6 R. M. Fernandes , S. A. Kivelson , and E. Berg , Phys. Rev. B 93 , 014511 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.93.014511 [7] 7 P. Dai , J. Hu , and E. Dagotto , Nat. Phys. 8 , 709 ( 2012 ). NPAHAX 1745-2473 10.1038/nphys2438 [8] 8 P. Dai , Rev. Mod. Phys. 87 , 855 ( 2015 ). RMPHAT 0034-6861 10.1103/RevModPhys.87.855 [9] 9 M. G. Kim , A. Kreyssig , A. Thaler , D. K. Pratt , W. Tian , J. L. Zarestky , M. A. Green , S. L. Bud’ko , P. C. Canfield , R. J. McQueeney , and A. I. Goldman , Phys. Rev. B 82 , 220503(R) ( 2010 ). PRBMDO 1098-0121 10.1103/PhysRevB.82.220503 [10] 10 E. Hassinger , G. Gredat , F. Valade , S. R. de Cotret , A. Juneau-Fecteau , J.-P. Reid , H. Kim , M. A. Tanatar , R. Prozorov , B. Shen , H.-H. Wen , N. Doiron-Leyraud , and L. Taillefer , Phys. Rev. B 86 , 140502 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.86.140502 [11] 11 W. R. Meier , Q.-P. Ding , A. Kreyssig , S. L. Bud’ko , A. Sapkota , K. Kothapalli , V. Borisov , R. Valenti , C. D. Batista , P. P. Orth , R. M. Fernandes , A. I. Goldman , Y. Furukawa , A. E. Böhmer , and P. C. Canfield , npj Quantum Materials 3 , 5 ( 2018 ). 2196-5609 10.1038/s41535-017-0076-x [12] 12 S. Avci , O. Chmaissem , J. M. Allred , S. Rosenkranz , I. Eremin , A. V. Chubukov , D. E. Bugaris , D. Y. Chung , M. G. Kanatzidis , J.-P Castellan , J. A. Schlueter , H. Claus , D. D. Khalyavin , P. Manuel , A. Daoud-Aladine , and R. Osborn , Nat. Commun. 5 , 3845 ( 2014 ). NCAOBW 2041-1723 10.1038/ncomms4845 [13] 13 J. M. Allred , K. M. Taddei , D. E. Bugaris , M. J. Krogstad , S. H. Lapidus , D. Y. Chung , H. Claus , M. G. Kanatzidis , D. E. Brown , J. Kang , R. M. Fernandes , I. Eremin , S. Rosenkranz , O. Chmaissem , and R. Osborn , Nat. Phys. 12 , 493 ( 2016 ). NPAHAX 1745-2473 10.1038/nphys3629 [14] 14 A. E. Böhmer , F. Hardy , L. Wang , T. Wolf , P. Schweiss , and C. Meingast , Nat. Commun. 6 , 7911 ( 2015 ). NCAOBW 2041-1723 10.1038/ncomms8911 [15] 15 L. Wang , F. Hardy , A. E. Böhmer , T. Wolf , P. Schweiss , and C. Meingast , Phys. Rev. B 93 , 014514 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.93.014514 [16] 16 F. Waßer , A. Schneidewind , Y. Sidis , S. Wurmehl , S. Aswartham , B. Büchner , and M. Braden , Phys. Rev. B 91 , 060505(R) ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.060505 [17] 17 D. D. Khalyavin , S. W. Lovesey , P. Manuel , F. Krüger , S. Rosenkranz , J. M. Allred , O. Chmaissem , and R. Osborn , Phys. Rev. B 90 , 174511 ( 2014 ). PRBMDO 1098-0121 10.1103/PhysRevB.90.174511 [18] 18 B. P. P. Mallett , P. Marsik , M. Yazdi-Rizi , T. Wolf , A. E. Böhmer , F. Hardy , C. Meingast , D. Munzar , and C. Bernhard , Phys. Rev. Lett. 115 , 027003 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.115.027003 [19] 19 Y. Zheng , P. M. Tam , J. Hou , A. E. Böhmer , T. Wolf , C. Meingast , and R. Lortz , Phys. Rev. B 93 , 104516 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.93.104516 [20] 20 B. P. P. Mallett , Y. G. Pashkevich , A. Gusev , T. Wolf , and C. Bernhard , Europhys. Lett. 111 , 57001 ( 2015 ). EULEEJ 0295-5075 10.1209/0295-5075/111/57001 [21] 21 K. M. Taddei , J. M. Allred , D. E. Bugaris , S. Lapidus , M. J. Krogstad , R. Stadel , H. Claus , D. Y. Chung , M. G. Kanatzidis , S. Rosenkranz , R. Osborn , and O. Chmaissem , Phys. Rev. B 93 , 134510 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.93.134510 [22] 22 K. M. Taddei , J. M. Allred , D. E. Bugaris , S. H. Lapidus , M. J. Krogstad , H. Claus , D. Y. Chung , M. G. Kanatzidis , R. Osborn , S. Rosenkranz , and O. Chmaissem , Phys. Rev. B 95 , 064508 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.95.064508 [23] 23 B. A. Frandsen , K. M. Taddei , M. Yi , A. Frano , Z. Guguchia , R. Yu , Q. Si , D. E. Bugaris , R. Stadel , R. Osborn , S. Rosenkranz , O. Chmaissem , and R. J. Birgeneau , Phys. Rev. Lett. 119 , 187001 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.187001 [24] 24 E. Hassinger , G. Gredat , F. Valade , S. René de Cotret , O. Cyr-Choinière , A. Juneau-Fecteau , J.-Ph. Reid , H. Kim , M. A. Tanatar , R. Prozorov , B. Shen , H.-H. Wen , N. Doiron-Leyraud , and L. Taillefer , Phys. Rev. B 93 , 144401 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.93.144401 [25] 25 G. Giovannetti , C. Ortix , M. Marsman , M. Capone , J. van den Brink , and J. Lorenzana , Nat. Commun. 2 , 398 ( 2011 ). NCAOBW 2041-1723 10.1038/ncomms1407 [26] 26 P. M. R. Brydon , J. Schmiedt , and C. Timm , Phys. Rev. B 84 , 214510 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.84.214510 [27] 27 J. Kang , X. Wang , A. V. Chubukov , and R. M. Fernandes , Phys. Rev. B 91 , 121104(R) ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.121104 [28] 28 X. Wang , J. Kang , and R. M. Fernandes , Phys. Rev. B 91 , 024401 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.024401 [29] 29 M. H. Christensen , J. Kang , B. M. Andersen , I. Eremin , and R. M. Fernandes , Phys. Rev. B 92 , 214509 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.92.214509 [30] 30 M. H. Christensen , D. D. Scherer , P. Kotetes , and B. M. Andersen , Phys. Rev. B 96 , 014523 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.96.014523 [31] 31 M. N. Gastiasoro and B. M. Andersen , Phys. Rev. B 92 , 140506(R) ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.92.140506 [32] 32 X. Wang and R. M. Fernandes , Phys. Rev. B 89 , 144502 ( 2014 ). PRBMDO 1098-0121 10.1103/PhysRevB.89.144502 [33] 33 J. O’Halloran , D. F. Agterberg , M. X. Chen , and M. Weinert , Phys. Rev. B 95 , 075104 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.95.075104 [34] 34 J. Wang , G.-Z. Liu , D. V. Efremov , and J. van den Brink , Phys. Rev. B 95 , 024511 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.95.024511 [35] 35 M. Hoyer , R. M. Fernandes , A. Levchenko , and J. Schmalian , Phys. Rev. B 93 , 144414 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.93.144414 [36] 36 S. V. Borisenko , D. V. Evtushinsky , Z.-H. Liu , I. Morozov , R. Kappenberger , S. Wurmehl , B. Büchner , A. N. Yaresko , T. K. Kim , M. Hoesch , T. Wolf , and N. D. Zhigadlo , Nat. Phys. 12 , 311 ( 2016 ). NPAHAX 1745-2473 10.1038/nphys3594 [37] 37 O. J. Lipscombe , L. W. Harriger , P. G. Freeman , M. Enderle , C. Zhang , M. Wang , T. Egami , J. Hu , T. Xiang , M. R. Norman , and P. Dai , Phys. Rev. B 82 , 064515 ( 2010 ). PRBMDO 1098-0121 10.1103/PhysRevB.82.064515 [38] 38 N. Qureshi , P. Steffens , S. Wurmehl , S. Aswartham , B. Büchner , and M. Braden , Phys. Rev. B 86 , 060410 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.86.060410 [39] 39 C. Wang , R. Zhang , F. Wang , H. Luo , L. P. Regnault , P. Dai , and Y. Li , Phys. Rev. X 3 , 041036 ( 2013 ). PRXHAE 2160-3308 10.1103/PhysRevX.3.041036 [40] 40 Y. Song , L.-P. Regnault , C. Zhang , G. Tan , S. V. Carr , S. Chi , A. D. Christianson , T. Xiang , and P. Dai , Phys. Rev. B 88 , 134512 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.88.134512 [41] 41 P. Steffens , C. H. Lee , N. Qureshi , K. Kihou , A. Iyo , H. Eisaki , and M. Braden , Phys. Rev. Lett. 110 , 137001 ( 2013 ). PRLTAO 0031-9007 10.1103/PhysRevLett.110.137001 [42] 42 Z. Li , D. L. Sun , C. T. Lin , Y. H. Su , J. P. Hu , and G.-Q. Zheng , Phys. Rev. B 83 , 140506 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.83.140506 [43] 43 M. Hirano , Y. Yamada , T. Saito , R. Nagashima , T. Konishi , T. Toriyama , Y. Ohta , H. Fukazawa , Y. Kohori , Y. Furukawa , K. Kihou , C.-H. Lee , A. Iyo , and H. Eisaki , J. Phys. Soc. Jpn. 81 , 054704 ( 2012 ). JUPSAU 0031-9015 10.1143/JPSJ.81.054704 [44] 44 T. Kissikov , R. Sarkar , M. Lawson , B. T. Bush , E. I. Timmons , M. A. Tanatar , R. Prozorov , S. L. Bud’ko , P. C. Canfield , R. M. Fernandes , and N. J. Curro , Nat. Commun. 9 , 1058 ( 2018 ). NCAOBW 2041-1723 10.1038/s41467-018-03377-8 [45] 45 A. E. Böhmer , K. Kothapalli , W. T. Jayasekara , J. M. Wilde , B. Li , A. Sapkota , B. G. Ueland , P. Das , Y. Xiao , W. Bi , J. Zhao , E. E. Alp , S. L. Bud’ko , P. C. Canfield , A. I. Goldman , and A. Kreyssig , arXiv:1803.09449 . [46] 46 D. C. Johnston , Adv. Phys. 59 , 803 ( 2010 ). ADPHAH 0001-8732 10.1080/00018732.2010.513480 [47] 47 H. H. Wen and S. Li , Annu. Rev. Condens. Matter Phys. 2 , 121 ( 2011 ). ARCMCX 1947-5454 10.1146/annurev-conmatphys-062910-140518 [48] 48 J. Paglione and R. L. Greene , Nat. Phys. 6 , 645 ( 2010 ). NPAHAX 1745-2473 10.1038/nphys1759 [49] 49 K. G. Wilson and J. Kogut , Phys. Rep. 12 , 75 ( 1974 ). PRPLCM 0370-1573 10.1016/0370-1573(74)90023-4 [50] 50 Y. Qi and C. Xu , Phys. Rev. B 80 , 094402 ( 2009 ). PRBMDO 1098-0121 10.1103/PhysRevB.80.094402 [51] 51 A. J. Millis , Phys. Rev. B 81 , 035117 ( 2010 ). PRBMDO 1098-0121 10.1103/PhysRevB.81.035117 [52] 52 Y. Kamiya , N. Kawashima , and C. D. Batista , Phys. Rev. B 84 , 214429 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.84.214429 [53] 53 R. M. Fernandes , A. V. Chubukov , J. Knolle , I. Eremin , and J. Schmalian , Phys. Rev. B 85 , 024534 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.85.024534 [54] 54 M. Ma , P. Bourges , Y. Sidis , Y. Xu , S. Li , B. Hu , J. Li , F. Wang , and Y. Li , Phys. Rev. X 7 , 021025 ( 2017 ). PRXHAE 2160-3308 10.1103/PhysRevX.7.021025 [55] 55 V. Cvetkovic and O. Vafek , Phys. Rev. B 88 , 134510 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.88.134510 [56] 56 M. H. Christensen , P. P. Orth , B. M. Andersen , and R. M. Fernandes , companion paper, Phys. Rev. B , 98 , 014523 ( 2018 ). PRBMDO 2469-9950 10.1103/PhysRevB.98.014523 [57] 57 D. Guterding , H. O. Jeschke , I. I. Mazin , J. K. Glasbrenner , E. Bascones , and R. Valentí , Phys. Rev. Lett. 118 , 017204 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.017204 [58] 58 R. M. Fernandes and A. J. Millis , Phys. Rev. Lett. 110 , 117004 ( 2013 ). PRLTAO 0031-9007 10.1103/PhysRevLett.110.117004

Fingerprint Dive into the research topics of 'Emergent Magnetic Degeneracy in Iron Pnictides due to the Interplay between Spin-Orbit Coupling and Quantum Fluctuations'. Together they form a unique fingerprint.

Cite this