Emergent ferromagnetism with superconductivity in Fe(Te,Se) van der Waals Josephson junctions

Gang Qiu, Hung Yu Yang, Lunhui Hu, Huairuo Zhang, Chih Yen Chen, Yanfeng Lyu, Christopher Eckberg, Peng Deng, Sergiy Krylyuk, Albert V. Davydov, Ruixing Zhang, Kang L. Wang

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Ferromagnetism and superconductivity are two key ingredients for topological superconductors, which can serve as building blocks of fault-tolerant quantum computers. Adversely, ferromagnetism and superconductivity are typically also two hostile orderings competing to align spins in different configurations, and thus making the material design and experimental implementation extremely challenging. A single material platform with concurrent ferromagnetism and superconductivity is actively pursued. In this paper, we fabricate van der Waals Josephson junctions made with iron-based superconductor Fe(Te,Se), and report the global device-level transport signatures of interfacial ferromagnetism emerging with superconducting states for the first time. Magnetic hysteresis in the junction resistance is observed only below the superconducting critical temperature, suggesting an inherent correlation between ferromagnetic and superconducting order parameters. The 0-π phase mixing in the Fraunhofer patterns pinpoints the ferromagnetism on the junction interface. More importantly, a stochastic field-free superconducting diode effect was observed in Josephson junction devices, with a significant diode efficiency up to 10%, which unambiguously confirms the spontaneous time-reversal symmetry breaking. Our work demonstrates a new way to search for topological superconductivity in iron-based superconductors for future high Tc fault-tolerant qubit implementations from a device perspective.

Original languageEnglish (US)
Article number6691
JournalNature communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023, Springer Nature Limited.

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Emergent ferromagnetism with superconductivity in Fe(Te,Se) van der Waals Josephson junctions'. Together they form a unique fingerprint.

Cite this