Embedding the Kepler Problem as a Surface of Revolution

Richard Moeckel

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Solutions of the planar Kepler problem with fixed energy h determine geodesics of the corresponding Jacobi–Maupertuis metric. This is a Riemannian metric on ℝ2 if h ⩾ 0 or on a disk D ⊂ ℝ2 if h < 0. The metric is singular at the origin (the collision singularity) and also on the boundary of the disk when h < 0. The Kepler problem and the corresponding metric are invariant under rotations of the plane and it is natural to wonder whether the metric can be realized as a surface of revolution in ℝ3 or some other simple space. In this note, we use elementary methods to study the geometry of the Kepler metric and the embedding problem. Embeddings of the metrics with h ⩾ 0 as surfaces of revolution in ℝ3 are constructed explicitly but no such embedding exists for h < 0 due to a problem near the boundary of the disk. We prove a theorem showing that the same problem occurs for every analytic central force potential. Returning to the Kepler metric, we rule out embeddings in the three-sphere or hyperbolic space, but succeed in constructing an embedding in four-dimensional Minkowski spacetime. Indeed, there are many such embeddings.

Original languageEnglish (US)
Pages (from-to)695-703
Number of pages9
JournalRegular and Chaotic Dynamics
Volume23
Issue number6
DOIs
StatePublished - Nov 1 2018

Bibliographical note

Publisher Copyright:
© 2018, Pleiades Publishing, Ltd.

Keywords

  • 53A05
  • 53C42
  • 53C80
  • 70F05
  • 70F15
  • 70G45
  • Jacobi–Maupertuis metric
  • celestial mechanics
  • surfaces of revolution

Fingerprint

Dive into the research topics of 'Embedding the Kepler Problem as a Surface of Revolution'. Together they form a unique fingerprint.

Cite this