TY - JOUR
T1 - Elevated hyaluronan and hyaluronan-mediated motility receptor are associated with biochemical failure in patients with intermediate-grade prostate tumors
AU - Rizzardi, Anthony E.
AU - Vogel, Rachel Isaksson
AU - Koopmeiners, Joseph S.
AU - Forster, Colleen L.
AU - Marston, Lauren O.
AU - Rosener, Nikolaus K.
AU - Akentieva, Natalia
AU - Price, Matthew A.
AU - Metzger, Gregory J.
AU - Warlick, Christopher A.
AU - Henriksen, Jonathan C.
AU - Turley, Eva A.
AU - McCarthy, James B.
AU - Schmechel, Stephen C.
PY - 2014/6/15
Y1 - 2014/6/15
N2 - BACKGROUND The clinical course of prostate cancer (PCa) measured by biochemical failure (BF) after prostatectomy remains unpredictable in many patients, particularly in intermediate Gleason score (GS) 7 tumors, suggesting that identification of molecular mechanisms associated with aggressive PCa biology may be exploited for improved prognostication or therapy. Hyaluronan (HA) is a high molecular weight polyanionic carbohydrate produced by synthases (HAS1 through HAS3) and fragmented by oxidative/nitrosative stress and hyaluronidases (HYAL1 through HYAL4, SPAM1) common in PCa microenvironments. HA and HA fragments interact with receptors CD44 and hyaluronan-mediated motility receptor (HMMR), resulting in increased tumor aggressiveness in experimental PCa models. This study evaluated the association of HA-related molecules with BF after prostatectomy in GS7 tumors. METHODS Tissue microarrays were constructed from a 96-patient cohort. HA histochemistry and HAS2, HYAL1, CD44, CD44v6, and HMMR immunohistochemistry were quantified using digital pathology techniques. RESULTS HA in tumor-associated stroma and HMMR in malignant epithelium were significantly and marginally significantly associated with time to BF in univariate analysis, respectively. After adjusting for clinicopathologic features, both HA in tumor-associated stroma and HMMR in malignant epithelium were significantly associated with time to BF. Although not significantly associated with BF, HAS2 and HYAL1 positively correlated with HMMR in malignant epithelium. Cell culture assays demonstrated that HMMR bound native and fragmented HA, promoted HA uptake, and was required for a promigratory response to fragmented HA. CONCLUSIONS HA and HMMR are factors associated with time to BF in GS7 tumors, suggesting that increased HA synthesis and fragmentation within the tumor microenvironment stimulates aggressive PCa behavior through HA-HMMR signaling.
AB - BACKGROUND The clinical course of prostate cancer (PCa) measured by biochemical failure (BF) after prostatectomy remains unpredictable in many patients, particularly in intermediate Gleason score (GS) 7 tumors, suggesting that identification of molecular mechanisms associated with aggressive PCa biology may be exploited for improved prognostication or therapy. Hyaluronan (HA) is a high molecular weight polyanionic carbohydrate produced by synthases (HAS1 through HAS3) and fragmented by oxidative/nitrosative stress and hyaluronidases (HYAL1 through HYAL4, SPAM1) common in PCa microenvironments. HA and HA fragments interact with receptors CD44 and hyaluronan-mediated motility receptor (HMMR), resulting in increased tumor aggressiveness in experimental PCa models. This study evaluated the association of HA-related molecules with BF after prostatectomy in GS7 tumors. METHODS Tissue microarrays were constructed from a 96-patient cohort. HA histochemistry and HAS2, HYAL1, CD44, CD44v6, and HMMR immunohistochemistry were quantified using digital pathology techniques. RESULTS HA in tumor-associated stroma and HMMR in malignant epithelium were significantly and marginally significantly associated with time to BF in univariate analysis, respectively. After adjusting for clinicopathologic features, both HA in tumor-associated stroma and HMMR in malignant epithelium were significantly associated with time to BF. Although not significantly associated with BF, HAS2 and HYAL1 positively correlated with HMMR in malignant epithelium. Cell culture assays demonstrated that HMMR bound native and fragmented HA, promoted HA uptake, and was required for a promigratory response to fragmented HA. CONCLUSIONS HA and HMMR are factors associated with time to BF in GS7 tumors, suggesting that increased HA synthesis and fragmentation within the tumor microenvironment stimulates aggressive PCa behavior through HA-HMMR signaling.
KW - biomarkers
KW - digital pathology
KW - hyaluronan
KW - hyaluronan-mediated motility receptor
KW - prostate cancer
UR - http://www.scopus.com/inward/record.url?scp=84902155087&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902155087&partnerID=8YFLogxK
U2 - 10.1002/cncr.28646
DO - 10.1002/cncr.28646
M3 - Article
C2 - 24668563
AN - SCOPUS:84902155087
SN - 0008-543X
VL - 120
SP - 1800
EP - 1809
JO - Cancer
JF - Cancer
IS - 12
ER -