Elevated CO2 influences microbial carbon and nitrogen cycling

Meiying Xu, Zhili He, Ye Deng, Liyou Wu, Joy D. Van Nostrand, Sarah E. Hobbie, Peter B. Reich, Jizhong Zhou

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

Background: Elevated atmospheric CO2 (eCO2) has been shown to have significant effects on terrestrial ecosystems. However, little is known about its influence on the structure, composition, and functional potential of soil microbial communities, especially carbon (C) and nitrogen (N) cycling. A high-throughput functional gene array (GeoChip 3.0) was used to examine the composition, structure, and metabolic potential of soil microbial communities from a grassland field experiment after ten-year field exposure to ambient and elevated CO2 concentrations. Results: Distinct microbial communities were established under eCO2. The abundance of three key C fixation genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbon monoxide dehydrogenase (CODH) and propionyl-CoA/acetyl-CoA carboxylase (PCC/ACC), significantly increased under eCO2, and so did some C degrading genes involved in starch, cellulose, and hemicellulose. Also, nifH and nirS involved in N cycling were significantly stimulated. In addition, based on variation partitioning analysis (VPA), the soil microbial community structure was largely shaped by direct and indirect eCO2-driven factors. Conclusions: These findings suggest that the soil microbial community structure and their ecosystem functioning for C and N cycling were altered dramatically at eCO2. This study provides new insights into our understanding of the feedback response of soil microbial communities to elevated CO2 and global change.

Original languageEnglish (US)
Article number124
JournalBMC microbiology
Volume13
Issue number1
DOIs
StatePublished - 2013

Bibliographical note

Funding Information:
This work is supported by the United States Department of Agriculture (Project 2007-35319-18305) through NSF-USDA Microbial Observatories Program; by US Department of Energy (contract DE-SC0004601), by the National Science Foundation under Grant Numbers DEB-0716587 and DEB-0620652 as well as DEB-0322057, DEB-0080382, DEB-0218039 DEB-0219104, DEB-0217631, DEB-0716587 (BioComplexity, Cedar Creek LTER and LTREB projects); the DOE Program for Ecosystem Research; the Minnesota Environment and Natural Resources Trust Fund; and the Team Project of the Natural Science Foundation of Guangdong Province, China (9351007002000001).

Fingerprint

Dive into the research topics of 'Elevated CO<sub>2</sub> influences microbial carbon and nitrogen cycling'. Together they form a unique fingerprint.

Cite this