Electrolyte-gated transistors for enhanced performance bioelectronics

Fabrizio Torricelli, Demetra Z. Adrahtas, Zhenan Bao, Magnus Berggren, Fabio Biscarini, Annalisa Bonfiglio, Carlo A. Bortolotti, C. Daniel Frisbie, Eleonora Macchia, George G. Malliaras, Iain McCulloch, Maximilian Moser, Thuc Quyen Nguyen, Róisín M. Owens, Alberto Salleo, Andrea Spanu, Luisa Torsi

Research output: Contribution to journalReview articlepeer-review

169 Scopus citations


Electrolyte-gated transistors (EGTs), capable of transducing biological and biochemical inputs into amplified electronic signals and stably operating in aqueous environments, have emerged as fundamental building blocks in bioelectronics. In this Primer, the different EGT architectures are described with the fundamental mechanisms underpinning their functional operation, providing insight into key experiments including necessary data analysis and validation. Several organic and inorganic materials used in the EGT structures and the different fabrication approaches for an optimal experimental design are presented and compared. The functional bio-layers and/or biosystems integrated into or interfaced to EGTs, including self-organization and self-assembly strategies, are reviewed. Relevant and promising applications are discussed, including two-dimensional and three-dimensional cell monitoring, ultra-sensitive biosensors, electrophysiology, synaptic and neuromorphic bio-interfaces, prosthetics and robotics. Advantages, limitations and possible optimizations are also surveyed. Finally, current issues and future directions for further developments and applications are discussed.

Original languageEnglish (US)
Article number66
JournalNature Reviews Methods Primers
Issue number1
StatePublished - Dec 2021

Bibliographical note

Funding Information:
F.T and L.T. acknowledge financial support from the European Union, Italian Government and Lombardia Region for the project BIOSCREEN (POR FESR 2014-2020, ID number 1831459, CUP E81B20000320007). F.T., E.M. and L.T. acknowledge financial support from the European Commission for the project SiMBiT (Horizon 2020 ICT, contract number 824946). D.Z.A. was supported by a Biotechnology Training (Grant No. NIH T32GM008347). G.G.M. acknowledges support from H2020-EU-FET Open MITICS (964677).

Publisher Copyright:
© 2021, Springer Nature Limited.


Dive into the research topics of 'Electrolyte-gated transistors for enhanced performance bioelectronics'. Together they form a unique fingerprint.

Cite this