Electrically triggered release of a small molecule drug from a polyelectrolyte multilayer coating

Daniel J. Schmidt, Joshua S. Moskowitz, Paula T. Hammond

Research output: Contribution to journalArticlepeer-review

110 Scopus citations


Electrically triggered drug delivery represents an attractive option for actively and remotely controlling the release of a therapeutic from an implantable device (e.g., a "pharmacy-on-a-chip").Herewe report the fabrication of nanoscale thin films that can release precise quantities of a smallmolecule drug in response to application of a small, anodic electric potential of at least +0.5 V versus Ag/AgCl. Films containing negatively charged Prussian Blue (PB) nanoparticles and positively charged gentamicin, a small hydrophilic antibiotic, were fabricated using layer-by-layer (LbL) assembly. When oxidized, the PB nanoparticles shift fromnegatively charged to neutral, inducing dissolution of the film.Filmswith thicknesses in the range 100-500 nm corresponding to drug loadings of 1-4 μg/cm2 were characterized. We demonstrate control over the drug dosage by tuning the film thickness as well as the magnitude of the applied voltage. Drug release kinetics ranging from triggered burst release to on/off, or pulsatile release, were achieved by applying different electric potential profiles. Finally, the in vitro efficacy of the released drugwas confirmed against Staphylococcus aureus bacteria. Given the versatility of an external electrical stimulus and the ability of theLbLassembly to conformally coat a variety of substrates regardless of size, shape, or chemical composition, we maintain that electrically controlled release of a drug from an LbL-coated surface could have applications in both implantable medical devices and transdermal drug delivery systems.

Original languageEnglish (US)
Pages (from-to)6416-6425
Number of pages10
JournalChemistry of Materials
Issue number23
StatePublished - Dec 14 2010


Dive into the research topics of 'Electrically triggered release of a small molecule drug from a polyelectrolyte multilayer coating'. Together they form a unique fingerprint.

Cite this