Electrical networks and lie theory

Thomas Lam, Pavlo Pylyavskyy

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

We introduce a new class of “electrical” Lie groups. These Lie groups, or more precisely their nonnegative parts, act on the space of planar electrical networks via combinatorial operations previously studied by Curtis, Ingerman and Morrow. The corresponding electrical Lie algebras are obtained by deforming the Serre relations of a semisimple Lie algebra in a way suggested by the star-triangle transformation of electrical networks. Rather surprisingly, we show that the type A electrical Lie group is isomorphic to the symplectic group. The electrically nonnegative part.EL2n)≥0 of the electrical Lie group is an analogue of the totally nonnegative subsemigroup.Un)≥0 of the unipotent subgroup of SLn. We establish decomposition and parametrization results for.EL2n)≥0, paralleling Lusztig’s work in total nonnegativity, and work of Curtis, Ingerman and Morrow and of Colin de Verdière, Gitler and Vertigan for networks. Finally, we suggest a generalization of electrical Lie algebras to all Dynkin types.

Original languageEnglish (US)
Pages (from-to)1401-1418
Number of pages18
JournalAlgebra and Number Theory
Volume9
Issue number6
DOIs
StatePublished - Sep 22 2015

Bibliographical note

Publisher Copyright:
©2015 Mathematical Sciences Publishers.

Keywords

  • Electrical networks
  • Lie algebras
  • Serre relations

Fingerprint

Dive into the research topics of 'Electrical networks and lie theory'. Together they form a unique fingerprint.

Cite this