Abstract
Real-world networks are known to exhibit community structure, characterized by presence of dense node clusters with loose edge connections among them. Although identification of communities is a well-studied subject, most approaches only focus on edge-based criteria which may not incorporate important grouping information captured by higher-order structures e.g., cliques and cycles, to name a few. In order to overcome this limitation, the present paper advocates a novel three-way tensor network representation that captures spatial dependencies among node neighborhoods. Each tensor slice captures a connectivity matrix pertaining to a unique egonet, defined as the subgraph induced by a node and its single-hop neighbors. Constrained tensor factorization is pursued to reveal the hidden and possibly overlapping community structure. Numerical tests on synthetic and real world networks corroborate the efficacy of the novel approach.
Original language | English (US) |
---|---|
Title of host publication | 2016 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2016 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 341-345 |
Number of pages | 5 |
ISBN (Electronic) | 9781509045457 |
DOIs | |
State | Published - Apr 19 2017 |
Event | 2016 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2016 - Washington, United States Duration: Dec 7 2016 → Dec 9 2016 |
Publication series
Name | 2016 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2016 - Proceedings |
---|
Other
Other | 2016 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2016 |
---|---|
Country/Territory | United States |
City | Washington |
Period | 12/7/16 → 12/9/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
Keywords
- CPD
- Community detection
- Egonets
- PARAFAC
- Social networks
- Tensor decomposition