Egocentric future localization

Hyun Soo Park, Jyh Jing Hwang, Yedong Niu, Jianbo Shi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

74 Scopus citations

Abstract

We presents a method for future localization: to predict plausible future trajectories of ego-motion in egocentric stereo images. Our paths avoid obstacles, move between objects, even turn around a corner into space behind objects. As a byproduct of the predicted trajectories, we discover the empty space occluded by foreground objects. One key innovation is the creation of an EgoRetinal map, akin to an illustrated tourist map, that 'rearranges' pixels taking into accounts depth information, the ground plane, and body motion direction, so that it allows motion planning and perception of objects on one image space. We learn to plan trajectories directly on this EgoRetinal map using first person experience of walking around in a variety of scenes. In a testing phase, given an novel scene, we find multiple hypotheses of future trajectories from the learned experience. We refine them by minimizing a cost function that describes compatibility between the obstacles in the EgoRetinal map and trajectories. We quantitatively evaluate our method to show predictive validity and apply to various real world daily activities including walking, shopping, and social interactions.

Original languageEnglish (US)
Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
PublisherIEEE Computer Society
Pages4697-4705
Number of pages9
ISBN (Electronic)9781467388504
DOIs
StatePublished - Dec 9 2016
Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
Duration: Jun 26 2016Jul 1 2016

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2016-December
ISSN (Print)1063-6919

Conference

Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
Country/TerritoryUnited States
CityLas Vegas
Period6/26/167/1/16

Bibliographical note

Publisher Copyright:
© 2016 IEEE.

Fingerprint

Dive into the research topics of 'Egocentric future localization'. Together they form a unique fingerprint.

Cite this