Abstract
The problem of operating a Gaussian Half-Duplex (HD) relay network optimally is challenging due to the exponential number of listen/transmit network states that need to be considered. Recent results have shown that, for the class of Gaussian HD networks with N relays, there always exists a simple schedule, i.e., with at most N+1 active states, that is sufficient for approximate (i.e., up to a constant gap) capacity characterization. This paper investigates how to efficiently find such a simple schedule over line networks. Towards this end, a polynomial-time algorithm is designed and proved to output a simple schedule that achieves the approximate capacity. The key ingredient of the algorithm is to leverage similarities between network states in HD and edge coloring in a graph. It is also shown that the algorithm allows to derive a closed-form expression for the approximate capacity of the Gaussian line network that can be evaluated distributively and in linear time.
Original language | English (US) |
---|---|
Title of host publication | 2017 IEEE International Symposium on Information Theory, ISIT 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 471-475 |
Number of pages | 5 |
ISBN (Electronic) | 9781509040964 |
DOIs | |
State | Published - Aug 9 2017 |
Event | 2017 IEEE International Symposium on Information Theory, ISIT 2017 - Aachen, Germany Duration: Jun 25 2017 → Jun 30 2017 |
Publication series
Name | IEEE International Symposium on Information Theory - Proceedings |
---|---|
ISSN (Print) | 2157-8095 |
Other
Other | 2017 IEEE International Symposium on Information Theory, ISIT 2017 |
---|---|
Country/Territory | Germany |
City | Aachen |
Period | 6/25/17 → 6/30/17 |
Bibliographical note
Publisher Copyright:© 2017 IEEE.