Efficient aminoacylation of the tRNAAla acceptor stem: Dependence on the 2:71 base pair

Penny J. Beuning, Maria C. Nagan, Christopher J. Cramer, Karin Musier-Forsyth, Josep Lluis Gelpí, Donald Bashford

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Specific aminoacylation by aminoacyl-tRNA synthetases requires accurate recognition of cognate tRNA substrates. In the case of alanyl-tRNA synthetase (AlaRS), RNA duplexes that mimic the acceptor stem of the tRNA are efficient substrates for aminoacylation in vitro. It was previously shown that recognition by AlaRS is severely affected by a simple base pair transversion of the G2:C71 pair at the second position in the RNA helix. In this study, we determined the aminoacylation efficiencies of 50 variants of the tRNAAla acceptor stem containing substitutions at the 2:71 position. We find that there is not a single functional group of the wild-type G2:C71 base pair that is critical for positive recognition. Rather, we observed that base-pair orientation plays an important role in recognition. In particular, pyrimidine2:purine71 combinations generally resulted in decreased aminoacylation efficiency compared to the corresponding purine:pyrimidine pair. Moreover, the activity of a pyrimidine:purine variant could be partially restored by the presence of a major groove amino group at position 71. In an attempt to understand this result further, dielectric continuum electrostatic calculations were carried out, in some cases with additional inclusion of van der Waals interaction energies, to determine interaction potentials of the wild-type duplexAla and seven 2:71 variants. This analysis revealed a positive correlation between major groove negative electrostatic potential in the vicinity of the 3:70 base pair and measured aminoacylation efficiency.

Original languageEnglish (US)
Pages (from-to)659-670
Number of pages12
JournalRNA
Volume8
Issue number5
DOIs
StatePublished - 2002

Keywords

  • Atomic group mutagenesis
  • Electrostatic potential
  • Molecular dynamics
  • Molecular interaction potential
  • RNA recognition
  • TRNA acceptor stem

Fingerprint Dive into the research topics of 'Efficient aminoacylation of the tRNA<sup>Ala</sup> acceptor stem: Dependence on the 2:71 base pair'. Together they form a unique fingerprint.

Cite this