TY - JOUR
T1 - Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate.
AU - Mai, Jeffrey C.
AU - Shen, Hongmei
AU - Watkins, Simon C.
AU - Cheng, Tao
AU - Robbins, Paul D.
PY - 2002/8/16
Y1 - 2002/8/16
N2 - Protein transduction domains (PTDs), both naturally occurring and synthetic, have been increasingly utilized to deliver biologically active agents to a variety of cell types in vitro and in vivo. We report that in addition to previously characterized arginine-rich PTDs, including TAT, lysine homopolymers were able to mediate transduction of a wide variety of cell types, as measured by flow cytometric and enzymatic assays. The efficiency of PTD-mediated transduction was influenced by the cell type tested, although polylysine homopolymers demonstrate levels of internalization that consistently exceeded those of TAT and arginine homopolymers. Transduction of arginine/lysine-rich PTDs occurred at 4 degrees C and following depletion of cellular ATP pools, albeit generally at reduced levels. Although transduction was reduced in Chinese hamster ovary mutant lines deficient in either heparan sulfate or glycosaminoglycan synthesis, uptake was restored to wild-type levels by incubating target cells with dextran sulfate. The enhancement of transduction by dextran sulfate suggests that electrostatic interactions play an important first step in the process by which PTDs and their cargo traverse the plasma membrane.
AB - Protein transduction domains (PTDs), both naturally occurring and synthetic, have been increasingly utilized to deliver biologically active agents to a variety of cell types in vitro and in vivo. We report that in addition to previously characterized arginine-rich PTDs, including TAT, lysine homopolymers were able to mediate transduction of a wide variety of cell types, as measured by flow cytometric and enzymatic assays. The efficiency of PTD-mediated transduction was influenced by the cell type tested, although polylysine homopolymers demonstrate levels of internalization that consistently exceeded those of TAT and arginine homopolymers. Transduction of arginine/lysine-rich PTDs occurred at 4 degrees C and following depletion of cellular ATP pools, albeit generally at reduced levels. Although transduction was reduced in Chinese hamster ovary mutant lines deficient in either heparan sulfate or glycosaminoglycan synthesis, uptake was restored to wild-type levels by incubating target cells with dextran sulfate. The enhancement of transduction by dextran sulfate suggests that electrostatic interactions play an important first step in the process by which PTDs and their cargo traverse the plasma membrane.
UR - http://www.scopus.com/inward/record.url?scp=0037119348&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037119348&partnerID=8YFLogxK
U2 - 10.1074/jbc.M204202200
DO - 10.1074/jbc.M204202200
M3 - Article
C2 - 12034749
AN - SCOPUS:0037119348
SN - 0021-9258
VL - 277
SP - 30208
EP - 30218
JO - The Journal of biological chemistry
JF - The Journal of biological chemistry
IS - 33
ER -