Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate.

Jeffrey C. Mai, Hongmei Shen, Simon C. Watkins, Tao Cheng, Paul D. Robbins

Research output: Contribution to journalArticlepeer-review

134 Scopus citations

Abstract

Protein transduction domains (PTDs), both naturally occurring and synthetic, have been increasingly utilized to deliver biologically active agents to a variety of cell types in vitro and in vivo. We report that in addition to previously characterized arginine-rich PTDs, including TAT, lysine homopolymers were able to mediate transduction of a wide variety of cell types, as measured by flow cytometric and enzymatic assays. The efficiency of PTD-mediated transduction was influenced by the cell type tested, although polylysine homopolymers demonstrate levels of internalization that consistently exceeded those of TAT and arginine homopolymers. Transduction of arginine/lysine-rich PTDs occurred at 4 degrees C and following depletion of cellular ATP pools, albeit generally at reduced levels. Although transduction was reduced in Chinese hamster ovary mutant lines deficient in either heparan sulfate or glycosaminoglycan synthesis, uptake was restored to wild-type levels by incubating target cells with dextran sulfate. The enhancement of transduction by dextran sulfate suggests that electrostatic interactions play an important first step in the process by which PTDs and their cargo traverse the plasma membrane.

Original languageEnglish (US)
Pages (from-to)30208-30218
Number of pages11
JournalThe Journal of biological chemistry
Volume277
Issue number33
DOIs
StatePublished - Aug 16 2002
Externally publishedYes

Fingerprint

Dive into the research topics of 'Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate.'. Together they form a unique fingerprint.

Cite this