Efficacy/toxicity dose-finding using hierarchical modeling for multiple populations

Kristen M Cunanan, Joe Koopmeiners

Research output: Contribution to journalArticle

Abstract

Traditionally, Phase I oncology trials evaluate the safety profile of a novel agent and identify a maximum tolerable dose based on toxicity alone. With the development of biologically targeted agents, investigators believe the efficacy of a novel agent may plateau or diminish before reaching the maximum tolerable dose while toxicity continues to increase. This motivates dose-finding based on the simultaneous evaluation of toxicity and efficacy. Previously, we investigated hierarchical modeling in the context of Phase I dose-escalation studies for multiple populations and found borrowing strength across populations improved operating characteristics. In this article, we discuss three hierarchical extensions to commonly used probability models for efficacy and toxicity in Phase I-II trials and adapt our previously proposed dose-finding algorithm for multiple populations to this setting. First, we consider both parametric and non-parametric bivariate models for binary outcomes and, in addition, we consider an under-parameterized model that combines toxicity and efficacy into a single trinary outcome. Our simulation results indicate hierarchical modeling increases the probability of correctly identifying the optimal dose and increases the average number of patients treated at the optimal dose, with the under-parameterized hierarchical model displaying desirable and robust operating characteristics.

Original languageEnglish (US)
Pages (from-to)162-172
Number of pages11
JournalContemporary Clinical Trials
Volume71
DOIs
StatePublished - Aug 1 2018

Fingerprint

Population
Research Personnel
Safety

Keywords

  • Continual reassessment method
  • Dose-finding
  • Multiple populations
  • Phase I-II

PubMed: MeSH publication types

  • Journal Article

Cite this

Efficacy/toxicity dose-finding using hierarchical modeling for multiple populations. / Cunanan, Kristen M; Koopmeiners, Joe.

In: Contemporary Clinical Trials, Vol. 71, 01.08.2018, p. 162-172.

Research output: Contribution to journalArticle

@article{cbbcf8fe44b14bf3b086ad5c712c87dd,
title = "Efficacy/toxicity dose-finding using hierarchical modeling for multiple populations",
abstract = "Traditionally, Phase I oncology trials evaluate the safety profile of a novel agent and identify a maximum tolerable dose based on toxicity alone. With the development of biologically targeted agents, investigators believe the efficacy of a novel agent may plateau or diminish before reaching the maximum tolerable dose while toxicity continues to increase. This motivates dose-finding based on the simultaneous evaluation of toxicity and efficacy. Previously, we investigated hierarchical modeling in the context of Phase I dose-escalation studies for multiple populations and found borrowing strength across populations improved operating characteristics. In this article, we discuss three hierarchical extensions to commonly used probability models for efficacy and toxicity in Phase I-II trials and adapt our previously proposed dose-finding algorithm for multiple populations to this setting. First, we consider both parametric and non-parametric bivariate models for binary outcomes and, in addition, we consider an under-parameterized model that combines toxicity and efficacy into a single trinary outcome. Our simulation results indicate hierarchical modeling increases the probability of correctly identifying the optimal dose and increases the average number of patients treated at the optimal dose, with the under-parameterized hierarchical model displaying desirable and robust operating characteristics.",
keywords = "Continual reassessment method, Dose-finding, Multiple populations, Phase I-II",
author = "Cunanan, {Kristen M} and Joe Koopmeiners",
year = "2018",
month = "8",
day = "1",
doi = "10.1016/j.cct.2018.06.012",
language = "English (US)",
volume = "71",
pages = "162--172",
journal = "Contemporary Clinical Trials",
issn = "1551-7144",
publisher = "Elsevier Inc.",

}

TY - JOUR

T1 - Efficacy/toxicity dose-finding using hierarchical modeling for multiple populations

AU - Cunanan, Kristen M

AU - Koopmeiners, Joe

PY - 2018/8/1

Y1 - 2018/8/1

N2 - Traditionally, Phase I oncology trials evaluate the safety profile of a novel agent and identify a maximum tolerable dose based on toxicity alone. With the development of biologically targeted agents, investigators believe the efficacy of a novel agent may plateau or diminish before reaching the maximum tolerable dose while toxicity continues to increase. This motivates dose-finding based on the simultaneous evaluation of toxicity and efficacy. Previously, we investigated hierarchical modeling in the context of Phase I dose-escalation studies for multiple populations and found borrowing strength across populations improved operating characteristics. In this article, we discuss three hierarchical extensions to commonly used probability models for efficacy and toxicity in Phase I-II trials and adapt our previously proposed dose-finding algorithm for multiple populations to this setting. First, we consider both parametric and non-parametric bivariate models for binary outcomes and, in addition, we consider an under-parameterized model that combines toxicity and efficacy into a single trinary outcome. Our simulation results indicate hierarchical modeling increases the probability of correctly identifying the optimal dose and increases the average number of patients treated at the optimal dose, with the under-parameterized hierarchical model displaying desirable and robust operating characteristics.

AB - Traditionally, Phase I oncology trials evaluate the safety profile of a novel agent and identify a maximum tolerable dose based on toxicity alone. With the development of biologically targeted agents, investigators believe the efficacy of a novel agent may plateau or diminish before reaching the maximum tolerable dose while toxicity continues to increase. This motivates dose-finding based on the simultaneous evaluation of toxicity and efficacy. Previously, we investigated hierarchical modeling in the context of Phase I dose-escalation studies for multiple populations and found borrowing strength across populations improved operating characteristics. In this article, we discuss three hierarchical extensions to commonly used probability models for efficacy and toxicity in Phase I-II trials and adapt our previously proposed dose-finding algorithm for multiple populations to this setting. First, we consider both parametric and non-parametric bivariate models for binary outcomes and, in addition, we consider an under-parameterized model that combines toxicity and efficacy into a single trinary outcome. Our simulation results indicate hierarchical modeling increases the probability of correctly identifying the optimal dose and increases the average number of patients treated at the optimal dose, with the under-parameterized hierarchical model displaying desirable and robust operating characteristics.

KW - Continual reassessment method

KW - Dose-finding

KW - Multiple populations

KW - Phase I-II

UR - http://www.scopus.com/inward/record.url?scp=85049308267&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85049308267&partnerID=8YFLogxK

U2 - 10.1016/j.cct.2018.06.012

DO - 10.1016/j.cct.2018.06.012

M3 - Article

VL - 71

SP - 162

EP - 172

JO - Contemporary Clinical Trials

JF - Contemporary Clinical Trials

SN - 1551-7144

ER -