TY - JOUR
T1 - Efficacy of reductive ventricular osmotherapy in a swine model of traumatic brain injury.
AU - Odland, Rick M.
AU - Venugopal, Sandya
AU - Borgos, John
AU - Coppes, Valerie
AU - McKinney, Alexander M.
AU - Rockswold, Gaylan
AU - Shi, Jian
AU - Panter, Scott
PY - 2012/2
Y1 - 2012/2
N2 - The presence of osmotic gradients in the development of cerebral edema and the effectiveness of osmotherapy are well recognized. A modification of ventriculostomy catheters described in this article provides a method of osmotherapy that is not currently available. The reductive ventricular osmotherapy (RVOT) catheter removes free water from ventricular cerebrospinal fluid (CSF) by incorporating hollow fibers that remove water vapor, thereby providing osmotherapy without increasing osmotic load. To increase osmolarity in the ventricular CSF through use of RVOT in vivo. Twelve Yorkshire swine with contusional injury were randomized to external ventricular drainage (EVD) or RVOT for 12 hours. MR imaging was obtained. Serum, CSF, and brain ultrafiltrate were analyzed. Histology was compared using Fluor-Jade B and hematoxylin and eosin (H & E) stains. With RVOT, CSF osmolality increased from 292 ± 2.7 to 345 ± 8.0 mOsmol/kg (mean ± SE, P = 0.0006), and the apparent diffusion coefficient (ADC) in the injury region increased from 0.735 ± 0.047 to 1.135 ± .063 (P = 0.004) over 24 hours. With EVD controls, CSF osmolarity and ADC were not significantly changed. Histologically, all RVOT pigs showed no evidence of neuronal degeneration (Grade 1/4) compared to moderate degeneration (Grade 2.6 ± .4/4) seen in EVD treated animals (P = 0.02). The difference in intracranial pressure (ICP) by area under the curve approached significance at P = .065 by Mann Whitney test. RVOT can increase CSF osmolarity in vivo after experimental traumatic brain injury (TBI). In anticipated clinical use, only a slight increase in CSF osmolarity may be required to reduce cerebral edema.
AB - The presence of osmotic gradients in the development of cerebral edema and the effectiveness of osmotherapy are well recognized. A modification of ventriculostomy catheters described in this article provides a method of osmotherapy that is not currently available. The reductive ventricular osmotherapy (RVOT) catheter removes free water from ventricular cerebrospinal fluid (CSF) by incorporating hollow fibers that remove water vapor, thereby providing osmotherapy without increasing osmotic load. To increase osmolarity in the ventricular CSF through use of RVOT in vivo. Twelve Yorkshire swine with contusional injury were randomized to external ventricular drainage (EVD) or RVOT for 12 hours. MR imaging was obtained. Serum, CSF, and brain ultrafiltrate were analyzed. Histology was compared using Fluor-Jade B and hematoxylin and eosin (H & E) stains. With RVOT, CSF osmolality increased from 292 ± 2.7 to 345 ± 8.0 mOsmol/kg (mean ± SE, P = 0.0006), and the apparent diffusion coefficient (ADC) in the injury region increased from 0.735 ± 0.047 to 1.135 ± .063 (P = 0.004) over 24 hours. With EVD controls, CSF osmolarity and ADC were not significantly changed. Histologically, all RVOT pigs showed no evidence of neuronal degeneration (Grade 1/4) compared to moderate degeneration (Grade 2.6 ± .4/4) seen in EVD treated animals (P = 0.02). The difference in intracranial pressure (ICP) by area under the curve approached significance at P = .065 by Mann Whitney test. RVOT can increase CSF osmolarity in vivo after experimental traumatic brain injury (TBI). In anticipated clinical use, only a slight increase in CSF osmolarity may be required to reduce cerebral edema.
UR - http://www.scopus.com/inward/record.url?scp=85027940573&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027940573&partnerID=8YFLogxK
U2 - 10.1227/neu.0b013e318230ee5e
DO - 10.1227/neu.0b013e318230ee5e
M3 - Article
C2 - 21826032
AN - SCOPUS:85027940573
SN - 0148-396X
VL - 70
SP - 445-454; discussion 455
JO - Neurosurgery
JF - Neurosurgery
IS - 2
ER -