Effects on Ca2+-activated tension due to a synthetic NH2-terminal actin peptide in single skeletal muscle fibers

Research output: Contribution to journalArticlepeer-review

Abstract

Insight into the mechanism of force development in striated muscle will be provided by elucidating the specific regions of the actin molecule that interact with myosin and regulatory subunits of the thin filament during Ca2+-activated contraction. There is growing evidence that the acidic NH2- terminal domain of actin 1) may represent an important binding site for myosin and 2) may interact with the inhibitory region of troponin I. The purpose of this study was to determine the effects of a synthetic peptide corresponding to a specific sequence of the NH2-terminal domain of skeletal muscle actin on Ca2+-activated tension in chemically skinned single psoas skeletal muscle fibers. This study focused on the highly conserved Lys18- Arg28 amino acid sequence of actin, a region of native actin that is believed to interact with troponin I and myosin. The effects of synthetic actin peptide Lys18-Arg28 on tension development varied, depending on 1) the concentration of Ca2+ in the activating solutions and 2) the peptide concentration. At submaximal concentrations of Ca2+, isometric tension was reversibly potentiated in the presence of 100-500 μM synthetic actin peptide Lys18-Arg28. Importantly, scrambling the sequence of Lys18-Arg28 fully abolished the increase in Ca2+ sensitivity, providing evidence that the observed effects were specific to the sequence of peptide Lys18- Arg28. In contrast, maximum Ca2+-activated tension was inhibited by millimolar concentrations of Lys18-Arg28 and the scrambled peptide, indicating that this effect was nonspecific. The effect of peptide Lys18- Arg28 to increase the Ca2+ sensitivity of tension is not known but may be due to an effect of the actin peptide to alter thin filament activation, a possibility consistent with proposed interactions between this domain of actin and the inhibitory region of troponin I.

Original languageEnglish (US)
Pages (from-to)C1193-C1199
JournalAmerican Journal of Physiology - Cell Physiology
Volume269
Issue number5 38-5
DOIs
StatePublished - Jan 1 1995

Keywords

  • force
  • muscle contraction
  • myosin
  • troponin

Fingerprint

Dive into the research topics of 'Effects on Ca2+-activated tension due to a synthetic NH2-terminal actin peptide in single skeletal muscle fibers'. Together they form a unique fingerprint.

Cite this