Abstract
Objective: Limited information is available on how to polish and finish zirconia surfaces following computer-Aided design/computeraided manufacturing (CAD/CAM), specifically, how differing application forces and reuse of zirconia polishing systems affect zirconia topography. Purpose: To determine the effect of differing, clinically relevant, polishing application forces and multiple usages of polishing burs on the surface topography of CAD/CAM zirconia. Methods: One hundred twenty 220-grit carbide finished zirconia disks were sintered according to manufacturer's directions and divided into two groups for the study of two coarse polishing bur types. Each group was divided into subgroups for polishing (15,000 rpm) at 15 seconds for 1.0 N, 4.5 N, or 11 N of force using a purpose-built fixture. Subgroups were further divided to study the effects of polishing for the first, fifth, 15th, and 30th bur use, simulating clinical procedures. Unpolished surfaces served as a control group. Surfaces were imaged with noncontact optical profilometry (OP) and atomic force microscopy (AFM) to measure average roughness values (Ra). Polishing burs were optically examined for wear. Scanning electron microscopy (SEM) was performed on burs and zirconia surfaces. One-way ANOVA with post hoc Tukey HSD (honest significant difference) tests (α=0.05) were used for statistical analyses. Results: AFM and OP Ra values of all polished surfaces were significantly lower than those of the unpolished control. Different polishing forces and bur reuse showed no significant differences in AFM Ra. However, significant differences in OP Ra were found due to differing application forces and bur reuse between the first and subsequent uses. SEM and optical micrographs revealed notable bur wear, increasing with increasing reuse. SEM and AFM micrographs clearly showed polished, periodic zirconia surfaces. Nanoscale topography, as analyzed with kurtosis and average groove depth, was found dependent on the specific polishing bur type. Conclusions: These in vitro results suggest changes in OP Ra due to bur reuse and polishing application force. Within the parameters of this study, the resultant topography of zirconia polishing is force-dependent and the reuse of coarse polishing burs is possible without statistically significant differences in Ra values after initial use. Nanoscale and microscale topography were shown to depend on specific polishing bur type.
Original language | English (US) |
---|---|
Pages (from-to) | 437-446 |
Number of pages | 10 |
Journal | Operative dentistry |
Volume | 43 |
Issue number | 4 |
DOIs | |
State | Published - Jul 1 2018 |
Externally published | Yes |
Bibliographical note
Funding Information:The authors gratefully acknowledge Shofu Dental Corporation for providing study materials. We thank the Creighton University Honors Program and Center for Undergraduate Research and Scholarship for funding. The authors recognize Mr Colin Thomas for support in the design and construction of the purpose-built polishing fixture. The authors gratefully recognize Prof Wayne W. Barkmeier for his critical review and discussion.
Publisher Copyright:
© 2018 Indiana University School of Dentistry. All rights reserved.