Effects of forage source on ruminal microbial nitrogen metabolism and carbohydrate digestion in continuous culture.

E. M. Dahlberg, M. D. Stern, F. R. Ehle

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Eight single-flow, continuous culture fermentors were used in Exp. 1 to study the effects of forage source on ruminal bacterial N metabolism and carbohydrate digestion. Forages included alfalfa, cicer milkvetch, birdsfoot trefoil and sainfoin with respective CP concentrations of 26.0, 28.7, 26.3 and 20.0%. Each forage provided 100% of the substrate for microbial metabolism and supplied 2.6 g N/d. Ammonia-N, protein degradation and efficiency of ruminal bacterial protein synthesis were lowest (P less than .05) for sainfoin. Protein degradation and efficiency of bacterial protein synthesis were higher (P less than .05) for birdsfoot trefoil than for alfalfa. Effluent flow of amino acids was highest (P less than .05) for sainfoin. Total nonstructural carbohydrate digestion tended to be highest for sainfoin and birdsfoot trefoil, whereas structural carbohydrate digestion was highest (P less than .05) for alfalfa and cicer milkvetch. In Exp. 2, mixed diets were supplied to dual-flow, continuous culture fermentors with alfalfa, cicer milkvetch, birdsfoot trefoil and sainfoin contributing 85% of the total dietary CP. Each diet contained approximately 12.9% CP. Ammonia-N concentration in the effluent and CP degradation tended to be lowest with the sainfoin diet and highest with the birdsfoot trefoil diet. Effluent flow of amino acids tended to be highest with the cicer milkvetch diet and lowest with the alfalfa and birdsfoot trefoil diet. Total structural and nonstructural carbohydrate digestion was not different (P greater than .05) among forages. Results from these experiments indicate that bacterial degradation of protein was lower for sainfoin than for alfalfa. Birdsfoot trefoil and cicer milkvetch appear to be comparable to alfalfa with regard to metabolism of N and carbohydrates by ruminal bacteria.

Original languageEnglish (US)
Pages (from-to)2071-2083
Number of pages13
JournalJournal of animal science
Volume66
Issue number8
DOIs
StatePublished - Aug 1988

Fingerprint

Dive into the research topics of 'Effects of forage source on ruminal microbial nitrogen metabolism and carbohydrate digestion in continuous culture.'. Together they form a unique fingerprint.

Cite this