Effects of excess nitrogen on biogeochemistry of a temperate hardwood forest: Evidence of nutrient redistribution by a forest understory species

Frank S. Gilliam, Jake H. Billmyer, Christopher A. Walter, William T. Peterjohn

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Excess nitrogen (N) in terrestrial ecosystems can arise from anthropogenically-increased atmospheric N deposition, a phenomenon common in eastern US forests. In spite of decreased N emissions over recent years, atmospheric concentrations of reactive N remain high in areas within this region. Excess N in forests has been shown to alter biogeochemical cycling of essential plant nutrients primarily via enhanced production and leaching of nitrate, which leads to loss of base cations from the soil. The purpose of our study was to investigate this phenomenon using a multifaceted approach to examine foliar nutrients of two herbaceous layer species in one N-treated watershed (WS3—receiving aerial applications of 35 kg N/ha/yr as ammonium sulfate, from 1989 to the present) and two untreated reference watersheds at the Fernow Experimental Forest, WV, USA. In 1993, we analyzed foliar tissue of Viola rotundifolia, a dominant herb layer species and prominent on all seven sample plots in each watershed. In 2013 and 2014, we used foliar tissue from Rubus allegheniensis, which had become the predominant species on WS3 and had increased, though to a lesser extent, in cover on both reference watersheds. Foliar N and potassium (K) were higher and foliar calcium (Ca) was lower on WS3 than on the reference watersheds for both species. Magnesium (Mg) was lower on WS3 for Viola, but was not different among watersheds for Rubus. Results support the stream chemistry-based observation that excess N lowers plant-available Ca and, to a lesser degree, Mg, but not of K. Foliar manganese (Mn) of Rubus averaged >4 times that of Viola, and was >50% higher on WS3 than on the reference watersheds. A Mn-based mechanism is proposed for the N-meditated increase in Rubus on WS3. Data suggest that excess N deposition not only alters herb community composition and biogeochemical cycling of forest ecosystems, but can do so simultaneously and interactively.

Original languageEnglish (US)
Pages (from-to)261-270
Number of pages10
JournalAtmospheric Environment
Volume146
DOIs
StatePublished - Dec 1 2016

Bibliographical note

Funding Information:
We are deeply indebted to several individuals. We thank Beverly Surratt and Annalisha Johnson for exceptional skill in creating the graphs, Jack Hopkins for essential field assistance in sampling foliar Rubus material, and Jess Parker for his expertise and generosity in providing canopy gap measurements. Financial assistance was provided to JHB via Summer Thesis Awards from Marshall University . Funding for this research was provided by the National Science Foundation from their Long-Term Research in Environmental Biology program (Grant Nos. DEB-0417678 and DEB-1019522 ). The long-term support of the USDA Forest Service in establishing and maintaining the research watersheds is acknowledged.

Publisher Copyright:
© 2016 Elsevier Ltd

Keywords

  • Calcium
  • Foliar nutrients
  • Manganese
  • Nitrogen saturation
  • Nutrient redistribution
  • Rubus
  • Viola

Fingerprint

Dive into the research topics of 'Effects of excess nitrogen on biogeochemistry of a temperate hardwood forest: Evidence of nutrient redistribution by a forest understory species'. Together they form a unique fingerprint.

Cite this