Effects of channel aspect ratio on convective heat transfer in an electronics cooling heat sink having agitation and fan-induced throughflow

Smita Agrawal, Longzhong Huang, Terrence Simon, Mark North, Tianhong Cui

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Fan-driven throughflow is frequently used for convective cooling of electronics. Channels with walls behaving like fins are common. In the present study, the flow inside the channels is agitated by means of translationally oscillating plates called agitators. Effectiveness of agitation by oscillating blades is found to be dependent on the channel width, a parameter studied herein. Heat sinks having narrower channels have a greater number of channels in total for the fixed size of heat sink and therefore greater heat transfer area than heat sinks with wider channels. Thus, with the same channel height, as the aspect ratio increases, channel width decreases, and it is found that opportunities for agitation are reduced and the generated turbulence is more strongly damped, thus reducing heat transfer coefficients. A study was carried out to find direction toward an optimal number of channels for a given heat sink using the agitation strategy. As part of the study, fluid damping and power consumption to drive the agitator assembly were addressed. The study was done numerically using ANSYS FLUENT on a representative single channel of the heat sink and the results were extended to the full size, multiple-channel heat sink system. Recommendations for moving toward an optimum geometry, based on thermal performance and agitator power are made.

Original languageEnglish (US)
Title of host publicationASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
DOIs
StatePublished - 2013
EventASME 2013 Heat Transfer Summer Conference, HT 2013 Collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology - Minneapolis, MN, United States
Duration: Jul 14 2013Jul 19 2013

Publication series

NameASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013
Volume3

Other

OtherASME 2013 Heat Transfer Summer Conference, HT 2013 Collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
Country/TerritoryUnited States
CityMinneapolis, MN
Period7/14/137/19/13

Keywords

  • Agitation
  • Aspect ratio
  • Electronics cooling
  • Heat sink

Fingerprint

Dive into the research topics of 'Effects of channel aspect ratio on convective heat transfer in an electronics cooling heat sink having agitation and fan-induced throughflow'. Together they form a unique fingerprint.

Cite this