Projects per year
Abstract
With the advent of new nanomanufacturing techniques has come the rise of the field of nanophotonics and an increased need to determine optical properties of novel structures. Commercial software packages are able to estimate the behavior, but require large resources and heavy computational time. By combining coordinate transforms and Effective Medium Theory (EMT), an effective relative permittivity tensor is defined and further exploited to calculate the polarization-coupled Fresnel coefficients through Maxwell’s equations. A uniaxial simplification is made to show the case of tilted nanorod arrays. To demonstrate the flexibility of this system, the interfacial reflectance has been calculated for both s- and p-polarizations as well as the coupled case with the volume filling fractions of f = 0.10 and 0.30 for silver (Ag) and titanium (Ti) nanorods, and a scenario of a Ag nanorod array with polymethyl methacrylate (PMMA) as the surrounding medium. The exact results computed by the finite-difference time-domain method justify the validity of EMT with polarization coupling taken into account. The effects of incidence angle and azimuthal angle on reflectance are also discussed. The relatively simple nature of this approach allows for fast estimations of the optical properties of various nanostructures.
Original language | English (US) |
---|---|
Article number | 13896 |
Journal | Scientific Reports |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2018 |
Bibliographical note
Publisher Copyright:© 2018, The Author(s).
MRSEC Support
- Primary
PubMed: MeSH publication types
- Journal Article
Fingerprint
Dive into the research topics of 'Effective Radiative Properties of Tilted Metallic Nanorod Arrays Considering Polarization Coupling'. Together they form a unique fingerprint.Projects
- 2 Finished
-
-
MRSEC IRG-2: Sustainable Nanocrystal Materials
Kortshagen, U. R., Aydil, E. S., Campbell, S. A., Francis, L. F., Haynes, C. L., Hogan, C., Mkhoyan, A., Shklovskii, B. I. & Wang, X.
11/1/14 → 10/31/20
Project: Research project