TY - JOUR
T1 - Effect of Thermal Lag and Measurement Precision in Differential Scanning Calorimetry
T2 - Theoretical Guidelines for Enzyme-Substrate Reactions by the Method of Orthogonal Collocation
AU - Whiting, L. F.
AU - Carr, P. W.
PY - 1978
Y1 - 1978
N2 - A simplified model of a differential scanning calorimeter (DSC) with large (40-120 µL) aqueous enzyme sample was simulated digitally by the mathematical technique called orthogonal collocation in order to observe the errors due to thermal lag (temperature and concentration gradients) in calculating the first-order Arrhenius kinetic parameters Zand ΔE. Only two dimensionless parameters were found to influence the determinate errors in the data, one related to the scan rate and the other related to the rate of diffusion relative to the rate of chemical reaction. The errors were independent of ΔH, C0, and Dm and also the parameters Z, ΔE, and To as long as the initial rate constant, k0, remained unchanged. Simulations also indicate that In Z and Δ can be obtained to within 5 % for an 80-µL sample at a scan rate of 5 K/min. An additional study was carried out involving the indeterminate errors incurred when one scans slowly relative to the rate of chemical reaction. Results indicate that random errors can easily be several times greater than the determinate errors related to thermal lag.
AB - A simplified model of a differential scanning calorimeter (DSC) with large (40-120 µL) aqueous enzyme sample was simulated digitally by the mathematical technique called orthogonal collocation in order to observe the errors due to thermal lag (temperature and concentration gradients) in calculating the first-order Arrhenius kinetic parameters Zand ΔE. Only two dimensionless parameters were found to influence the determinate errors in the data, one related to the scan rate and the other related to the rate of diffusion relative to the rate of chemical reaction. The errors were independent of ΔH, C0, and Dm and also the parameters Z, ΔE, and To as long as the initial rate constant, k0, remained unchanged. Simulations also indicate that In Z and Δ can be obtained to within 5 % for an 80-µL sample at a scan rate of 5 K/min. An additional study was carried out involving the indeterminate errors incurred when one scans slowly relative to the rate of chemical reaction. Results indicate that random errors can easily be several times greater than the determinate errors related to thermal lag.
UR - http://www.scopus.com/inward/record.url?scp=33947094451&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33947094451&partnerID=8YFLogxK
U2 - 10.1021/ac50036a017
DO - 10.1021/ac50036a017
M3 - Article
AN - SCOPUS:33947094451
SN - 0003-2700
VL - 50
SP - 1997
EP - 2006
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 14
ER -