Effect of Radiation Dose-Rate on Hematopoietic Cell Engraftment in Adult Zebrafish

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Although exceptionally high radiation dose-rates are currently attaining clinical feasibility, there have been relatively few studies reporting the biological consequences of these dose-rates in hematopoietic cell transplant (HCT). In zebrafish models of HCT, preconditioning before transplant is typically achieved through radiation alone. We report the comparison of outcomes in adult zebrafish irradiated with 20Gy at either 25 or 800 cGy/min in the context of experimental HCT. In non-transplanted irradiated fish we observed no substantial differences between dose-rate groups as assessed by fish mortality, cell death in the kidney, endogenous hematopoietic reconstitution, or gene expression levels of p53 and ddb2 (damage-specific DNA binding protein 2) in the kidney. However, following HCT, recipients conditioned with the higher dose rate showed significantly improved donor-derived engraftment at 9 days post transplant (p≤0.0001), and improved engraftment persisted at 31 days post transplant. Analysis for sdf-1a expression, as well as transplant of hematopoietic cells from cxcr4b -/- zebrafish, (odysseus), cumulatively suggest that the sdf-1a/cxcr4b axis is not required of donor-derived cells for the observed dose-rate effect on engraftment. Overall, the adult zebrafish model of HCT indicates that exceptionally high radiation dose-rates can impact HCT outcome, and offers a new system for radiobiological and mechanistic interrogation of this phenomenon. Key words: Radiation dose rate, Total Marrow Irradiation (TMI), Total body irradiation (TBI), SDF-1, Zebrafish, hematopoietic cell transplant.

Original languageEnglish (US)
Article numbere73745
JournalPloS one
Issue number9
StatePublished - Sep 18 2013

Fingerprint Dive into the research topics of 'Effect of Radiation Dose-Rate on Hematopoietic Cell Engraftment in Adult Zebrafish'. Together they form a unique fingerprint.

Cite this