TY - JOUR
T1 - Effect of pyruvate on oxidant injury to isolated and cellular DNA
AU - Nath, Karl A.
AU - Enright, Helen
AU - Nutter, Louise
AU - Fischereder, Michael
AU - Zou, Jing Nan
AU - Hebbel, Robert P.
PY - 1994/1
Y1 - 1994/1
N2 - Drawing upon the capacity of pyruvate to detoxify H2O2, we demonstrate that pyruvate (i) protects against H2O2-dependent, hydroxyl radical mediated degradation of isolated DNA; (ii) reduces the amount of 8-hydroxy- 2-deoxyguanosine detected following oxidative injury to isolated DNA and (iii) diminishes the amounts of detectable hydroxyl radical generated by a H2O2-dependent system. Compared to mannitol, pyruvate protects weakly against oxidative degradation of DNA induced by a H2O2-independent, hydroxyl radical-generating system. The protective effects of pyruvate against H2O2-instigated DNA damage were also evinced in cells in culture exposed to H2O2. In contrast to its protective effects against H2O2- dependent injury to DNA, pyruvate failed to offer convincing protection to another intracellular, H2O2-vulnerable target, glyceraldehyde-3-phosphate dehydrogenase. The protection conferred by pyruvate to intracellular H2O2- vulnerable targets is thus influenced by the nature of the target exposed to H2O2. Pyruvate was markedly protective in a model of cytotoxicity induced by the concomitant depletion of cellular glutathione and inhibition of catalase activity; pyruvate can thus function as an intracellular antioxidant and in this latter model, no evidence of DNA damage was observed. Pyruvate, in contrast to catalase, is a potent protector against cytotoxicity induced by organic peroxides, a finding that cannot be explained by the scavenging of organic peroxides, differences in glutathione content or attenuation in oxidative injury to DNA. We conclude that while DNA damage is a key pathogenetic event in oxidative stress induced by H2O2, such nuclear changes may not universally subserve a critical role in models of H2O2- dependent cell death. We also conclude that the antioxidant capabilities of pyruvate extend beyond scavenging of H2O2 to include potent protection against cytotoxicity induced by organic peroxides.
AB - Drawing upon the capacity of pyruvate to detoxify H2O2, we demonstrate that pyruvate (i) protects against H2O2-dependent, hydroxyl radical mediated degradation of isolated DNA; (ii) reduces the amount of 8-hydroxy- 2-deoxyguanosine detected following oxidative injury to isolated DNA and (iii) diminishes the amounts of detectable hydroxyl radical generated by a H2O2-dependent system. Compared to mannitol, pyruvate protects weakly against oxidative degradation of DNA induced by a H2O2-independent, hydroxyl radical-generating system. The protective effects of pyruvate against H2O2-instigated DNA damage were also evinced in cells in culture exposed to H2O2. In contrast to its protective effects against H2O2- dependent injury to DNA, pyruvate failed to offer convincing protection to another intracellular, H2O2-vulnerable target, glyceraldehyde-3-phosphate dehydrogenase. The protection conferred by pyruvate to intracellular H2O2- vulnerable targets is thus influenced by the nature of the target exposed to H2O2. Pyruvate was markedly protective in a model of cytotoxicity induced by the concomitant depletion of cellular glutathione and inhibition of catalase activity; pyruvate can thus function as an intracellular antioxidant and in this latter model, no evidence of DNA damage was observed. Pyruvate, in contrast to catalase, is a potent protector against cytotoxicity induced by organic peroxides, a finding that cannot be explained by the scavenging of organic peroxides, differences in glutathione content or attenuation in oxidative injury to DNA. We conclude that while DNA damage is a key pathogenetic event in oxidative stress induced by H2O2, such nuclear changes may not universally subserve a critical role in models of H2O2- dependent cell death. We also conclude that the antioxidant capabilities of pyruvate extend beyond scavenging of H2O2 to include potent protection against cytotoxicity induced by organic peroxides.
UR - http://www.scopus.com/inward/record.url?scp=0028032090&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028032090&partnerID=8YFLogxK
U2 - 10.1038/ki.1994.20
DO - 10.1038/ki.1994.20
M3 - Article
C2 - 8127006
AN - SCOPUS:0028032090
SN - 0085-2538
VL - 45
SP - 166
EP - 176
JO - Kidney international
JF - Kidney international
IS - 1
ER -