Effect of endwall motion on blade tip heat transfer

V. Srinivasan, R. J. Goldstein

Research output: Contribution to journalArticlepeer-review

78 Scopus citations


Local mass transfer measurements were conducted on the tip of a turbine blade in a five-blade linear cascade with a blade-centered configuration. The tip clearance levels ranged from 0.6 to 6.9% of blade chord. The effect of relative motion between the casing and the blade tip was simulated using a moving endwall made of neoprene mounted on the top of the wind tunnel. Data were obtained for a single Reynolds number of 2.7 X105 based on cascade exit velocity and blade chord. Pressure measurements indicate that the effect of endwall motion on blade loading at a clearance of 0.6% of blade chord is to reduce the pressure gradients driving the tip leakage flow. With the introduction of endwall motion, there is a reduction of about 9% in mass transfer levels at a clearance of 0.6% of chord. This is presumably due to the tip leakage vortex coming closer to the suction side of the blade and 'blocking the flow,' leading to reduced tip gap velocities and hence lower mass transfer.

Original languageEnglish (US)
Pages (from-to)267-273
Number of pages7
JournalJournal of Turbomachinery
Issue number2
StatePublished - Apr 1 2003


Dive into the research topics of 'Effect of endwall motion on blade tip heat transfer'. Together they form a unique fingerprint.

Cite this