Editing and methylation at a single site by functionally interdependent activities

Mary Anne T. Rubio, Kirk W. Gaston, Katherine M. McKenney, Ian M.C. Fleming, Zdeněk Paris, Patrick A. Limbach, Juan D. Alfonzo

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

Nucleic acids undergo naturally occurring chemical modifications. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified. Despite recent progress, the mechanism for the biosynthesis of most modifications is not fully understood, owing, in part, to the difficulty associated with reconstituting enzyme activity in vitro. Whereas some modifications can be efficiently formed with purified components, others may require more intricate pathways. A model for modification interdependence, in which one modification is a prerequisite for another, potentially explains a major hindrance in reconstituting enzymatic activity in vitro. This model was prompted by the earlier discovery of tRNA cytosine-to-uridine editing in eukaryotes, a reaction that has not been recapitulated in vitro and the mechanism of which remains unknown. Here we show that cytosine 32 in the anticodon loop of Trypanosoma brucei tRNA Thr is methylated to 3-methylcytosine (m3C) as a pre-requisite for C-to-U deamination. Formation of m 3C in vitro requires the presence of both the T. brucei m3C methyltransferase TRM140 and the deaminase ADAT2/3. Once formed, m3C is deaminated to 3-methyluridine (m 3 U) by the same set of enzymes. ADAT2/3 is a highly mutagenic enzyme, but we also show that when co-expressed with the methyltransferase its mutagenicity is kept in check. This helps to explain how T. brucei escapes 'wholesale deamination' of its genome while harbouring both enzymes in the nucleus. This observation has implications for the control of another mutagenic deaminase, human AID, and provides a rationale for its regulation.

Original languageEnglish (US)
Pages (from-to)494-497
Number of pages4
JournalNature
Volume542
Issue number7642
DOIs
StatePublished - Feb 22 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Editing and methylation at a single site by functionally interdependent activities'. Together they form a unique fingerprint.

Cite this