ECG-AI: Electrocardiographic artificial intelligence model for prediction of heart failure

Oguz Akbilgic, Liam Butler, Ibrahim Karabayir, Patricia P. Chang, Dalane W. Kitzman, Alvaro Alonso, Lin Y. Chen, Elsayed Z. Soliman

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Aims: Heart failure (HF) is a leading cause of death. Early intervention is the key to reduce HF-related morbidity and mortality. This study assesses the utility of electrocardiograms (ECGs) in HF risk prediction. Methods and results: Data from the baseline visits (1987-89) of the Atherosclerosis Risk in Communities (ARIC) study was used. Incident hospitalized HF events were ascertained by ICD codes. Participants with good quality baseline ECGs were included. Participants with prevalent HF were excluded. ECG-Artificial intelligence (AI) model to predict HF was created as a deep residual convolutional neural network (CNN) utilizing standard 12-lead ECG. The area under the receiver operating characteristic curve (AUC) was used to evaluate prediction models including (CNN), light gradient boosting machines (LGBM), and Cox proportional hazards regression. A total of 14 613 (45% male, 73% of white, mean age ± standard deviation of 54 ± 5) participants were eligible. A total of 803 (5.5%) participants developed HF within 10 years from baseline. Convolutional neural network utilizing solely ECG achieved an AUC of 0.756 (0.717-0.795) on the hold-out test data. ARIC and Framingham Heart Study (FHS) HF risk calculators yielded AUC of 0.802 (0.750-0.850) and 0.780 (0.740-0.830). The highest AUC of 0.818 (0.778-0.859) was obtained when ECG-AI model output, age, gender, race, body mass index, smoking status, prevalent coronary heart disease, diabetes mellitus, systolic blood pressure, and heart rate were used as predictors of HF within LGBM. The ECG-AI model output was the most important predictor of HF. Conclusions: ECG-AI model based solely on information extracted from ECG independently predicts HF with accuracy comparable to existing FHS and ARIC risk calculators.

Original languageEnglish (US)
Pages (from-to)626-634
Number of pages9
JournalEuropean Heart Journal - Digital Health
Volume2
Issue number4
DOIs
StatePublished - Dec 1 2021

Bibliographical note

Publisher Copyright:
© 2021 The Author(s). Published by Oxford University Press on behalf of the European Society of Cardiology.

Keywords

  • ARIC
  • Artificial intelligence
  • Deep learning
  • ECG
  • Electrocardiogram
  • Heart failure

Fingerprint

Dive into the research topics of 'ECG-AI: Electrocardiographic artificial intelligence model for prediction of heart failure'. Together they form a unique fingerprint.

Cite this