Abstract
Spike detection is often the first step in neural signal processing. It has profound effects on subsequent steps down the signal processing pipeline. Most existing spike detection algorithms require manual setting of detection threshold, which is very inconvenient for long-term neural interface. Furthermore, these algorithms are usually only evaluated using simulated dataset. Few studies are devoted to evaluating how different spike detection algorithms affect decoding performance in brain-computer interface. We have proposed a new spike detection algorithm called 'exponential component - power component' (EC-PC) that offers fully automatic unsupervised spike detection. In this study, we compared the performance of a motor decoding task when different spike detection algorithms were used. EC-PC is shown to produce a higher decoding accuracy compared with other existing algorithms. Our results suggest that EC-PC can help improve motor decoding performance of brain-computer interface.
Original language | English (US) |
---|---|
Title of host publication | 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 5142-5145 |
Number of pages | 4 |
ISBN (Electronic) | 9781424492718 |
DOIs | |
State | Published - Nov 4 2015 |
Event | 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy Duration: Aug 25 2015 → Aug 29 2015 |
Publication series
Name | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
---|---|
Volume | 2015-November |
ISSN (Print) | 1557-170X |
Other
Other | 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 |
---|---|
Country/Territory | Italy |
City | Milan |
Period | 8/25/15 → 8/29/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.