TY - JOUR
T1 - Early changes in carbon uptake and partitioning moderate belowground carbon storage in a perennial grain
AU - Woeltjen, Stella
AU - Jungers, Jacob
AU - Cates, Anna
AU - Gutknecht, Jessica
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/8/15
Y1 - 2024/8/15
N2 - There is increasing interest in perennial crops to build soil carbon (C), but the mechanisms underlying soil C accrual in perennial croplands remain unclear, especially over time in the first years of perennial crop growth. To address this gap, research is needed that directly tracks intra-annual C fluxes through crop-microbial-soil pools, evaluating the capacity of perennial crops to build soil C over intra-decadal time periods. We conducted a 13C isotope-tracer study to compare within-season C uptake and crop-microbial-soil C partitioning patterns between 1-year-old (IWG-1) and 2-year-old (IWG-2) stands of a novel perennial grain crop, intermediate wheatgrass (IWG; Thinopyrum intermedium (Host) Barkworth and Dewey). We compared these to a common annual grain crop, spring wheat (Triticum aestivum L.). Crop shoots, roots, soil, and soil respired-C were sampled ten times over a 90-day chase period. We also measured the incorporation of recently assimilated 13C into soil microbial biomass (13C PLFA) and functional groups over the first 7 days post-label application. Overall, IWG-1 assimilated almost 1670 mg 13C m−2 during the study period, nearly twice that of IWG-2 or wheat, but neither IWG system retained significant amounts of new C in soil. Rather, a higher proportion of assimilated new C was retained in IWG-1 in root tissues (14%) and arbuscular mycorrhizal fungi when compared to other cropping systems, while IWG-2 retained almost 50% of total assimilated C in aboveground crop tissues. We expect the shift from new C retention in belowground root-mycorrhizal networks to aboveground tissues is associated with a shift from an acquisitive to conservative growth strategy that occurs between the first and second IWG production years. The observed shift in C partitioning patterns and potential change in growth strategy limited the allocation and retention of new C in soil as IWG aged, adding valuable context to our understanding of why perennial grain crop establishment seldom leads to significant carbon gains in the first several years following establishment.
AB - There is increasing interest in perennial crops to build soil carbon (C), but the mechanisms underlying soil C accrual in perennial croplands remain unclear, especially over time in the first years of perennial crop growth. To address this gap, research is needed that directly tracks intra-annual C fluxes through crop-microbial-soil pools, evaluating the capacity of perennial crops to build soil C over intra-decadal time periods. We conducted a 13C isotope-tracer study to compare within-season C uptake and crop-microbial-soil C partitioning patterns between 1-year-old (IWG-1) and 2-year-old (IWG-2) stands of a novel perennial grain crop, intermediate wheatgrass (IWG; Thinopyrum intermedium (Host) Barkworth and Dewey). We compared these to a common annual grain crop, spring wheat (Triticum aestivum L.). Crop shoots, roots, soil, and soil respired-C were sampled ten times over a 90-day chase period. We also measured the incorporation of recently assimilated 13C into soil microbial biomass (13C PLFA) and functional groups over the first 7 days post-label application. Overall, IWG-1 assimilated almost 1670 mg 13C m−2 during the study period, nearly twice that of IWG-2 or wheat, but neither IWG system retained significant amounts of new C in soil. Rather, a higher proportion of assimilated new C was retained in IWG-1 in root tissues (14%) and arbuscular mycorrhizal fungi when compared to other cropping systems, while IWG-2 retained almost 50% of total assimilated C in aboveground crop tissues. We expect the shift from new C retention in belowground root-mycorrhizal networks to aboveground tissues is associated with a shift from an acquisitive to conservative growth strategy that occurs between the first and second IWG production years. The observed shift in C partitioning patterns and potential change in growth strategy limited the allocation and retention of new C in soil as IWG aged, adding valuable context to our understanding of why perennial grain crop establishment seldom leads to significant carbon gains in the first several years following establishment.
KW - C tracer
KW - Crop-soil interactions
KW - Kernza
KW - Microbial carbon use
KW - Rhizosphere
KW - Soil carbon sequestration
UR - http://www.scopus.com/inward/record.url?scp=85192171128&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85192171128&partnerID=8YFLogxK
U2 - 10.1016/j.agee.2024.109033
DO - 10.1016/j.agee.2024.109033
M3 - Article
AN - SCOPUS:85192171128
SN - 0167-8809
VL - 370
JO - Agriculture, Ecosystems and Environment
JF - Agriculture, Ecosystems and Environment
M1 - 109033
ER -