Dynamic model of a novel alternating flow (AF) hydraulic pump

Mengtang M. Li, Ryan Foss, Kim A. Stelson, James D. Van de Ven, Eric J. Barth

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations


High power density and good controllability are the most appealing characteristics that make hydraulic systems the best choice for many applications. Current state of the art hydraulic variable displacement pumps show high efficiency at high displacement while they have poor efficiencies at low displacement. This paper proposes a novel alternating flow (AF) variable displacement hydraulic pump to 1) eliminate metering losses by acting as a high-bandwidth pump for displacement control, 2) achieve high efficiency across a wide range of operating conditions and displacements, and 3) allow multiple units to be easily common-shaft mounted for a compact multi-actuator displacement control system from a single prime-mover. A dynamic model using first principles describes the cylinder pressure, flows between pairs of cylinders, and net inlet and outlet flows as a function of the pump’s phase shift angle. The model captures hydraulic check valve dynamics, the effective bulk modulus, leakage flows, and viscous friction. Piston kinematics and dynamics are discussed and energy loss models are presented and used to guide the design for a first prototype of the AF hydraulic pump. The paper presents simulation results from the model that offer an initial evaluation of this novel pump concept and potential applications.

Original languageEnglish (US)
Title of host publicationASME/BATH 2017 Symposium on Fluid Power and Motion Control, FPMC 2017
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791858332
StatePublished - 2017
EventASME/BATH 2017 Symposium on Fluid Power and Motion Control, FPMC 2017 - Sarasota, United States
Duration: Oct 16 2017Oct 19 2017

Publication series

NameASME/BATH 2017 Symposium on Fluid Power and Motion Control, FPMC 2017


OtherASME/BATH 2017 Symposium on Fluid Power and Motion Control, FPMC 2017
Country/TerritoryUnited States

Bibliographical note

Funding Information:
This project is sponsored by the Center for Compact and Efficient Fluid Power (CCEFP) under NSF grant #0540834 with funding from the National Fluid Power Association (NFPA) Education and Technology Foundation. We also thank Cat Pump® for donating the experimental prototype.

Publisher Copyright:
Copyright © 2017 ASME


Dive into the research topics of 'Dynamic model of a novel alternating flow (AF) hydraulic pump'. Together they form a unique fingerprint.

Cite this