TY - JOUR
T1 - Dynamic features of prothrombin interaction with phospholipid vesicles of different size and composition
T2 - Implications for protein-membrane contact
AU - Lu, Yuefeng
AU - Nelsestuen, Gary L
PY - 1996
Y1 - 1996
N2 - The dynamics of prothrombin interaction with membrane vesicles of different size and composition was investigated to ascertain the impact of membrane surface characteristics and particle size on this interaction. Dissociation rates were highly sensitive to membrane composition and varied from about 20/s for membranes of 10% PS to 0.1/s for membranes of 50% PS. Overall affinity also varied by more than two orders of magnitude. Very small differences between prothrombin binding to SUV versus LUV were found. Association with large unilamellar vesicles (LUV of 115 nm diameter) was about 4-fold slower, when expressed on the basis of binding sites, than association with small unilamellar vesicles (SUV, 30 nm diameter) of the same composition. Both reactions proceeded at less than 25% of the collisional limit so that the differences were largely due to intrinsic binding properties. Vesicles of 325 nm diameter showed even slower association velocities. Dissociation rates from LUV were about 2-fold slower than from SUV. Again, these differences arose primarily from intrinsic binding properties. Dissociation conformed to a single first order reaction over a wide range of protein occupancy on the membrane. At very high packing density, the dissociation rate increased by about 2-fold. At equilibrium, prothrombin preferred binding to SUV over LUV by about 2-fold. This very small difference, despite substantial differences in phospholipid headgroup packing and hydrocarbon exposure, appeared inconsistent with an important role for protein insertion into the hydrocarbon region of the membrane. However, prothrombin membrane interaction may arise from a series of interaction forces that have compensating features at equilibrium. The small differences in prothrombin binding to SUV versus LUV, together with differences in the number of protein binding sites per vesicle, were important to identify mechanisms of substrate delivery to the active site of the prothrombinase enzyme.
AB - The dynamics of prothrombin interaction with membrane vesicles of different size and composition was investigated to ascertain the impact of membrane surface characteristics and particle size on this interaction. Dissociation rates were highly sensitive to membrane composition and varied from about 20/s for membranes of 10% PS to 0.1/s for membranes of 50% PS. Overall affinity also varied by more than two orders of magnitude. Very small differences between prothrombin binding to SUV versus LUV were found. Association with large unilamellar vesicles (LUV of 115 nm diameter) was about 4-fold slower, when expressed on the basis of binding sites, than association with small unilamellar vesicles (SUV, 30 nm diameter) of the same composition. Both reactions proceeded at less than 25% of the collisional limit so that the differences were largely due to intrinsic binding properties. Vesicles of 325 nm diameter showed even slower association velocities. Dissociation rates from LUV were about 2-fold slower than from SUV. Again, these differences arose primarily from intrinsic binding properties. Dissociation conformed to a single first order reaction over a wide range of protein occupancy on the membrane. At very high packing density, the dissociation rate increased by about 2-fold. At equilibrium, prothrombin preferred binding to SUV over LUV by about 2-fold. This very small difference, despite substantial differences in phospholipid headgroup packing and hydrocarbon exposure, appeared inconsistent with an important role for protein insertion into the hydrocarbon region of the membrane. However, prothrombin membrane interaction may arise from a series of interaction forces that have compensating features at equilibrium. The small differences in prothrombin binding to SUV versus LUV, together with differences in the number of protein binding sites per vesicle, were important to identify mechanisms of substrate delivery to the active site of the prothrombinase enzyme.
UR - http://www.scopus.com/inward/record.url?scp=0030036599&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030036599&partnerID=8YFLogxK
U2 - 10.1021/bi960280o
DO - 10.1021/bi960280o
M3 - Article
C2 - 8679573
AN - SCOPUS:0030036599
SN - 0006-2960
VL - 35
SP - 8193
EP - 8200
JO - Biochemistry
JF - Biochemistry
IS - 25
ER -