Dynamic features of prothrombin interaction with phospholipid vesicles of different size and composition: Implications for protein-membrane contact

Yuefeng Lu, Gary L Nelsestuen

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

The dynamics of prothrombin interaction with membrane vesicles of different size and composition was investigated to ascertain the impact of membrane surface characteristics and particle size on this interaction. Dissociation rates were highly sensitive to membrane composition and varied from about 20/s for membranes of 10% PS to 0.1/s for membranes of 50% PS. Overall affinity also varied by more than two orders of magnitude. Very small differences between prothrombin binding to SUV versus LUV were found. Association with large unilamellar vesicles (LUV of 115 nm diameter) was about 4-fold slower, when expressed on the basis of binding sites, than association with small unilamellar vesicles (SUV, 30 nm diameter) of the same composition. Both reactions proceeded at less than 25% of the collisional limit so that the differences were largely due to intrinsic binding properties. Vesicles of 325 nm diameter showed even slower association velocities. Dissociation rates from LUV were about 2-fold slower than from SUV. Again, these differences arose primarily from intrinsic binding properties. Dissociation conformed to a single first order reaction over a wide range of protein occupancy on the membrane. At very high packing density, the dissociation rate increased by about 2-fold. At equilibrium, prothrombin preferred binding to SUV over LUV by about 2-fold. This very small difference, despite substantial differences in phospholipid headgroup packing and hydrocarbon exposure, appeared inconsistent with an important role for protein insertion into the hydrocarbon region of the membrane. However, prothrombin membrane interaction may arise from a series of interaction forces that have compensating features at equilibrium. The small differences in prothrombin binding to SUV versus LUV, together with differences in the number of protein binding sites per vesicle, were important to identify mechanisms of substrate delivery to the active site of the prothrombinase enzyme.

Original languageEnglish (US)
Pages (from-to)8193-8200
Number of pages8
JournalBiochemistry
Volume35
Issue number25
DOIs
StatePublished - 1996

Fingerprint Dive into the research topics of 'Dynamic features of prothrombin interaction with phospholipid vesicles of different size and composition: Implications for protein-membrane contact'. Together they form a unique fingerprint.

Cite this