Dual activities of an X-family DNA polymerase regulate CRISPR-induced insertional mutagenesis across species

Trevor Weiss, Jitesh Kumar, Chuan Chen, Shengsong Guo, Oliver Schlegel, John Lutterman, Kun Ling, Feng Zhang

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The canonical non-homologous end joining (c-NHEJ) repair pathway, generally viewed as stochastic, has recently been shown to produce predictable outcomes in CRISPR-Cas9 mutagenesis. This predictability, mainly in 1-bp insertions and small deletions, has led to the development of in-silico prediction programs for various animal species. However, the predictability of CRISPR-induced mutation profiles across species remained elusive. Comparing CRISPR-Cas9 repair outcomes between human and plant species reveals significant differences in 1-bp insertion profiles. The high predictability observed in human cells links to the template-dependent activity of human Polλ. Yet plant Polλ exhibits dual activities, generating 1-bp insertions through both templated and non-templated manners. Polλ knockout in plants leads to deletion-only mutations, while its overexpression enhances 1-bp insertion rates. Two conserved motifs are identified to modulate plant Polλ‘s dual activities. These findings unveil the mechanism behind species-specific CRISPR-Cas9-induced insertion profiles and offer strategies for predictable, precise genome editing through c-NHEJ.

Original languageEnglish (US)
Article number6293
JournalNature communications
Volume15
Issue number1
DOIs
StatePublished - Dec 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Dual activities of an X-family DNA polymerase regulate CRISPR-induced insertional mutagenesis across species'. Together they form a unique fingerprint.

Cite this