Does adaptation to historical climate shape plant responses to future rainfall patterns? A rainfall manipulation experiment with common ragweed

Amanda J. Gorton, Peter Tiffin, David A. Moeller

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Climate change is affecting both the volume and distribution of precipitation, which in turn is expected to affect the growth and reproduction of plant populations. The near ubiquity of local adaptation suggests that adaptive differentiation may have important consequences for how populations are affected by and respond to changing precipitation. Here, we manipulated rainfall in a common garden to examine how differentiation among populations of common ragweed, Ambrosia artemisiifolia (Asteraceae) affects responses to water availability expected under climate change. We collected seeds from 26 populations along gradients of historical rainfall and used event-based rainout shelters and watering additions to simulate drier summer conditions and more extreme rainfall events, respectively. Ambrosia artemisiifolia had higher fitness on average under reduced rainfall, suggesting it may spread and become more abundant in areas projected to become hotter and drier during the summer months. We also found strong evidence for phenotypic and fitness clines across both latitude and longitude, and that phenological responses and fitness effects of altered rainfall depended on seed source or historical climate. The effect of rainfall treatment on female fitness was highest in western and mid longitudes, but there was little effect on eastern populations. Across latitude, the effect of rainfall treatment on male fitness was highest in southern populations. These phenology and fitness clines suggest that adaptive differentiation across the species’ range has the potential to shape future responses of A. artemisiifolia populations to climate change, particularly altered patterns of rainfall.

Original languageEnglish (US)
Pages (from-to)941-953
Number of pages13
Issue number4
StatePublished - Aug 1 2019

Bibliographical note

Funding Information:
We thank J.W. Benning, J.Y. Kim, A. Peschel for assistance with planting, rainout shelter deployment, and data collection in the field., M. Merello for assistance with seed collections, C.G. Willis for assistance with data analysis, R.A. Montgomery and R.G. Shaw for advice on experimental design and data analysis, R.A. Montgomery and J.S. Powers for the use of data loggers and soil moisture probes, the Living Labs Program at the University of Minnesota for providing the field site, and members of the Moeller and Tiffin labs for useful feedback and discussions. A.J.G was supported by the Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarships Doctoral Program and the University of Minnesota Doctoral Dissertation Fellowship. The seed collections and field experiment were supported by the Carolyn M. Crosby Award awarded to A.J.G.

Publisher Copyright:
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.


  • Climate change
  • Latitudinal gradient
  • Local adaptation
  • Local maladaptation
  • Range limits


Dive into the research topics of 'Does adaptation to historical climate shape plant responses to future rainfall patterns? A rainfall manipulation experiment with common ragweed'. Together they form a unique fingerprint.

Cite this