DNN-Chip Predictor: An Analytical Performance Predictor for DNN Accelerators with Various Dataflows and Hardware Architectures

Yang Zhao, Chaojian Li, Yue Wang, Pengfei Xu, Yongan Zhang, Yingyan Lin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

29 Scopus citations

Abstract

The recent breakthroughs in deep neural networks (DNNs) have spurred a tremendously increased demand for DNN accelerators. However, designing DNN accelerators is non-trivial as it often takes months/years and requires cross-disciplinary knowledge. To enable fast and effective DNN accelerator development, we propose DNN-Chip Predictor, an analytical performance predictor which can accurately predict DNN accelerators' energy, throughput, and latency prior to their actual implementation. Our Predictor features two highlights: (1) its analytical performance formulation of DNN ASIC/FPGA accelerators facilitates fast design space exploration and optimization; and (2) it supports DNN accelerators with different algorithm-to-hardware mapping methods (i.e., dataflows) and hardware architectures. Experiment results based on 2 DNN models and 3 different ASIC/FPGA implementations show that our DNN-Chip Predictor's predicted performance differs from those of chip measurements of FPGA/ASIC implementation by no more than 17.66% when using different DNN models, hardware architectures, and dataflows. We will release code upon acceptance.

Original languageEnglish (US)
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1593-1597
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Externally publishedYes
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: May 4 2020May 8 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period5/4/205/8/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Keywords

  • ASIC
  • design automation
  • design simulator
  • DNN accelerator
  • FPGA

Fingerprint

Dive into the research topics of 'DNN-Chip Predictor: An Analytical Performance Predictor for DNN Accelerators with Various Dataflows and Hardware Architectures'. Together they form a unique fingerprint.

Cite this