DNA-Protein Cross-Links: Formation, Structural Identities, and Biological Outcomes

Natalia Y. Tretyakova, Arnold Groehler, Shaofei Ji

Research output: Contribution to journalArticlepeer-review

64 Scopus citations

Abstract

ConspectusNoncovalent DNA-protein interactions are at the heart of normal cell function. In eukaryotic cells, genomic DNA is wrapped around histone octamers to allow for chromosomal packaging in the nucleus. Binding of regulatory protein factors to DNA directs replication, controls transcription, and mediates cellular responses to DNA damage. Because of their fundamental significance in all cellular processes involving DNA, dynamic DNA-protein interactions are required for cell survival, and their disruption is likely to have serious biological consequences.DNA-protein cross-links (DPCs) form when cellular proteins become covalently trapped on DNA strands upon exposure to various endogenous, environmental and chemotherapeutic agents. DPCs progressively accumulate in the brain and heart tissues as a result of endogenous exposure to reactive oxygen species and lipid peroxidation products, as well as normal cellular metabolism. A range of structurally diverse DPCs are found following treatment with chemotherapeutic drugs, transition metal ions, and metabolically activated carcinogens. Because of their considerable size and their helix-distorting nature, DPCs interfere with the progression of replication and transcription machineries and hence hamper the faithful expression of genetic information, potentially contributing to mutagenesis and carcinogenesis. Mass spectrometry-based studies have identified hundreds of proteins that can become cross-linked to nuclear DNA in the presence of reactive oxygen species, carcinogen metabolites, and antitumor drugs. While many of these proteins including histones, transcription factors, and repair proteins are known DNA binding partners, other gene products with no documented affinity for DNA also participate in DPC formation. Furthermore, multiple sites within DNA can be targeted for cross-linking including the N7 of guanine, the C-5 methyl group of thymine, and the exocyclic amino groups of guanine, cytosine, and adenine. This structural complexity complicates structural and biological studies of DPC lesions.Two general strategies have been developed for creating DNA strands containing structurally defined, site-specific DPCs. Enzymatic methodologies that trap DNA modifying proteins on their DNA substrate are site specific and efficient, but do not allow for systematic studies of DPC lesion structure on their biological outcomes. Synthetic methodologies for DPC formation are based on solid phase synthesis of oligonucleotide strands containing protein-reactive unnatural DNA bases. The latter approach allows for a wider range of protein substrates to be conjugated to DNA and affords a greater flexibility for the attachment sites within DNA.In this Account, we outline the chemistry of DPC formation in cells, describe our recent efforts to identify the cross-linked proteins by mass spectrometry, and discuss various methodologies for preparing DNA strands containing structurally defined, site specific DPC lesions. Polymerase bypass experiments conducted with model DPCs indicate that the biological outcomes of these bulky lesions are strongly dependent on the peptide/protein size and the exact cross-linking site within DNA. Future studies are needed to elucidate the mechanisms of DPC repair and their biological outcomes in living cells.

Original languageEnglish (US)
Pages (from-to)1631-1644
Number of pages14
JournalAccounts of Chemical Research
Volume48
Issue number6
DOIs
StatePublished - Jun 16 2015

Fingerprint Dive into the research topics of 'DNA-Protein Cross-Links: Formation, Structural Identities, and Biological Outcomes'. Together they form a unique fingerprint.

Cite this