Abstract
Emerging evidence demonstrates that the DNA repair kinase DNA-PKcs exerts divergent roles in transcriptional regulation of unsolved consequence. Here, invitro and invivo interrogation demonstrate that DNA-PKcs functions as a selective modulator of transcriptional networks that induce cell migration, invasion, and metastasis. Accordingly, suppression of DNA-PKcs inhibits tumor metastases. Clinical assessment revealed that DNA-PKcs is significantly elevated in advanced disease and independently predicts for metastases, recurrence, and reduced overall survival. Further investigation demonstrated that DNA-PKcs in advanced tumors is highly activated, independent of DNA damage indicators. Combined, these findings reveal unexpected DNA-PKcs functions, identify DNA-PKcs as a potent driver of tumor progression and metastases, and nominate DNA-PKcs as a therapeutic target for advanced malignancies. Goodwin etal. identify DNA-PKcs as a promising therapeutic target that drives prostate cancer progression and metastasis through transcriptional regulation. DNA-PKcs is significantly elevated in advanced disease and is an independent predictor of metastasis, recurrence, and poor survival.
Original language | English (US) |
---|---|
Pages (from-to) | 97-113 |
Number of pages | 17 |
Journal | Cancer Cell |
Volume | 28 |
Issue number | 1 |
DOIs | |
State | Published - Jul 13 2015 |
Bibliographical note
Publisher Copyright:© 2015 Elsevier Inc..