DNA gyrase-mediated wrapping of the DNA strand is required for the replication fork arrest by the DNA gyrase-quinolone-DNA ternary complex

Hiroshi Hiasa, Molly E. Shea

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

The ability of DNA gyrase (Gyr) to wrap the DNA strand around itself allows Gyr to introduce negative supercoils into DNA molecules. It has been demonstrated that the deletion of the C-terminal DNA-binding domain of the GyrA subunit abolishes the ability of Gyr to wrap the DNA strand and catalyze the supercoiling reaction (Kampranis, S. C., and Maxwell, A. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14416-14421). By using this mutant Gyr, Gyr (A59), we have studied effects of Gyrmediated wrapping of the DNA strand on its replicative function and its interaction with the quinolone antibacterial drugs. We find that Gyr (A59) can support oriC DNA replication in vitro. However, Gyr (A59)-catalyzed decatenation activity is not efficient enough to complete the decatenation of replicating daughter DNA molecules. As is the case with topaisomerase IV, the active cleavage and reunion activity of Gyr is required for the formation of the ternary complex that can arrest replication fork progression in vitro. Although the quinolone drugs stimulate the covalent Gyr (A59)-DNA complex formation, the Gyr (A59)-quinolone-DNA ternary complexes do not arrest the progression of replication forks. Thus, the quinolone-induced covalent topoisomerase-DNA complex formation is necessary but not sufficient to cause the inhibition of DNA replication. We also assess the stability of ternary complexes formed with Gyr (A59), the wild type Gyr, or topoisomerase IV. The ternary complexes formed with Gyr (A59) are more sensitive to salt than those formed with either the wild type Gyr or topoisomerase IV. Furthermore, a competition experiment demonstrates that the ternary complexes formed with Gyr (A59) readily disassociate from the DNA, whereas the ternary complexes formed with either the wild type Gyr or topoisomerase IV remain stably bound. Thus, Gyr-mediated wrapping of the DNA strand is required for the formation of the stable Gyr-quinolone-DNA ternary complex that can arrest replication fork progression.

Original languageEnglish (US)
Pages (from-to)34780-34786
Number of pages7
JournalJournal of Biological Chemistry
Volume275
Issue number44
DOIs
StatePublished - Nov 3 2000

Fingerprint Dive into the research topics of 'DNA gyrase-mediated wrapping of the DNA strand is required for the replication fork arrest by the DNA gyrase-quinolone-DNA ternary complex'. Together they form a unique fingerprint.

Cite this